

TURBO Vs. STANDARD PASCAL F

F. TURBO VS. STANDARD PASCAL

The TURBO Pascal language closely follows the Standard Pascal defined by
Jensen & Wirth in their User Manual and Report, with only minor differen­
cies introduced for the sheer purpose of efficieny. These differencies are desc­
ribed in the following. Notice that the extensions offered by TURBO Pascal
are not discussed.

F.1 Dynamic Variables

Dynamic variables and pointers use the standard procedures New, Mark, and
Release instead of the New and Dispose procedures suggested by Standard
Pascal. Primarily this deviation from the standard is far more efficient in terms
of execution speed and required support code, and secondly it offers compati­
bility with other popular Pascal compilers (e.g. UCSD Pascal).

The procedure New will not accept variant record specifications. This restric­
tion, however, is easily circumvented by using the standard procedure Get­
Mem.

F.2 Recursion

CP/M -80 version only: Because of the way local variables are handled dur­
ing recursion, a variable local to a subprogram must not be passed as a var­
parameter in recursive calls.

F.3 Get and Put

The standard procedures Get and Put are not implemented. Instead, the Read
and Write procedures have been extended to handle all I/O needs. The reason
for this is threefold: Firstly Read and Write gives much faster I/O, secondly
variable space overhead is reduced, as file buffer variables are not required,
and thirdly the Read and Write procedures are far more versatile and easier to
understand that Get and Put.

TURBO Vs. STANDARD PASCAL 219

FA Goto Statements

F.4 Goto Statements

A goto statement must not leave the current block.

F.S Page Procedure

The standard procedure Page is not implemented, as the CP/M operating sy­
stem does not define a form-feed character.

F.S Packed Variables

The reserved word packed has no effect in TURBO Pascal, but it is still allo­
wed. This is because packing occurs automatically whenever possible. For the
same reason, standard procedures Pack and Unpack are not implemented.

F.7 Procedural Parameters

Procedures and functions cannot be passed as parameters.

220 TURBO Pascal Language Manual

COMPILER ERROR MESSA GES G

G. COMPILER ERROR MESSAGIES

The following is a listing of error messages you may get from the compiler.
When encountering an error, the compiler will always print the error number
on the screen. Explanatory texts will only be issued if you have included error
messages (answer V to the first question when you start TURBO).

Many error messages are totally self-explanatory, but some need a little ela­
boration as provided in the following.

01 ';' expected
02 ':' expected
03 ' " expected
04 '(' expected
05 ')' expected
06 ' =' expected
07 ': =' expected
08 '[' expected
09 ']' expected
10 ' .' expected
11 '.: expected
12 BEGIN expected
13 DO expected

. 14 END expected
1 5 0 F expected
17 TH EN expected
18 TO or DOWNTO expected
20 Boolean expression expected
21 File variable expected
22 I nteger constant expected
23 I nteger expression expected
24 Integer variable expected
25 Integer or real constant expected
26 I nteger o~ real expression expected
27 I nteger or real variable expected
28 Pointer variable expected
29 Record variable expected
30 Simple type expected

Simple types are all scalar types, except real.
31 Simple expression expected
32 String constant expected

COMPILER ERROR MESSA GES 221

G COMPILER ERROR MESSAGES

33 String expression expected
34 String variable expected
35 Textfile expected
36 Type identifier expected
37 Untyped file expected
40 Undefined label

A statement references an undefined label.
41 Unknown identifier or syntax error

Unknown label, constant, type, variable, or field identifier, or syntaxt
error in statement.

42 Undefined pointer type in preceding type definitions
A preceding pointer type definition contains a reference to an unk­
nown type identifier.

43 Duplicate identifier or label
This identifier or label has already been used within the current
block.

44 Type mismatch
1) Incompatible types of the variable and the expression in an as­
signment statement 2) Incompatible types of the actual and the for­
mal parameter in a call to a subprogram. 3) Expression type incom­
patible with index type in array assignment. 4) Types of operands in
an expression are not compatible.

45 Constant out of range
46 Constant and CASE selector type does not match
47 Operand type(s) does not match operator

E.g. 'A' div '2'
48 I nvalid result type

Valid types are all scalar types, string types, and pointer types.
49 Invalid string length

The length of a string must be in the range 1 .. 255.
50 String constant length does not match type
51 Invalid subrange base type

Valid base types are all scalar types, except real.
52 Lower bound)" upper bound

The ordinal value of the upper bound must be greater than or equal
to the ordinal value of the lower bound.

53 Reserved word
These may not be used as identifiers.

54 Illegal assignment
55 String constant exceeds line

String constants must not span lines.

222 TURBO Pascal Language Manual

COMPILER ERROR MESSA GES G

56 Error in integer constant
An Integer constant does not conform to the syntax described in
section 4.2, or it is not within the Integer range -32768 .. 32767.
Whole Real numbers should be followed by a decimal point and a
zero, e.g. 123456789.0.

57 Error in real constant
The syn.tax of Real constants is defined in section 4.2.

58 Illegal character in identifier
60 Constants are not allowed here
61 Files and pointers are not allowed here
62 Structured variables are not allowed here
63 Textfiles are not allowed here
64 Textfiles and untyped files are not allowed here
65 Untyped files are not allowed here
66 I/O not allowed here

Variables of this type cannot be input or output.
67 Files must be VAR parameters
68 File components may not be files

file of file constructs are not allowed.
69 I nvalid ordering of fields
70 Set base type out of range

The base type of a set must be a scalar with no more than 256 pos­
sible values or a subrange with bounds in the range 0 .. 255.

71 Invalid GOTO
A GOTO cannot reference a label within a FOR loop from outside
that FOR loop.

72 Label not within current block
A GOTO statement cannot reference a label outside the current
block.

73 Undefined FORWARD procedure(s)
A subprogram has been forward declared, but the body never
occurred.

74 INLINE error
75 Illegal use of ABSOLUTE

1) Only one identifier may appear before the colon in an absolute
variable declaration. 2) The absolute clause may not be used in a
record.

90 File not found
The specified include file does not exist.

91 Unexpected end of source
Your program cannot end the way it does. The program probably
has more begins than ends.

COMPILER ERROR MESSA GES 223

G COMPILER ERROR MESSAGES

97 Too many nested WITHs
Use the W compiler directive to increase the maximum number of
nested WITH statements. Default is 2. (CP/M-SO'only).

98 M emory overflow
You are trying to allocate more storage for variables than is avai­
lable.

99 Compiler overflow
There is not enough memory to compile the program. This error may
occur even if free memory seems to exist; it is, however, used by the
stack and the symbol table during compilation. Break your source
text into smaller segments and use include files.

224 TURBO Pascal Language Manual

RUN-TIME ERROR MESSAGES H

H. RUN-TIME ERROR MESSAGES

Fatal errors at run-time result in a program halt and the display of the mes­
sage:

Run-time error NN, PC=addr
Program aborted

where NN is the run-time error number, and addr is the address in the pro­
gram code where the error occurred. The following contains explanations of
all run-time error numbers. Notice that the numbers are hexadecimal!

01 Floating point overflow.
02 Division by zero attempted.
03 Sqrt argument error.

The argument passed to the Sqrt function was negative.
04 Ln argument error.

The argument passed to the Ln function was zero or negative.
10 String length error.

1) A string concatenation resulted in a string of more than 255 cha­
racters. 2) Only strings of length 1 can be converted to a character.

11 I nvalid string index.
Index expression is not within 1 .. 255 with Copy, Delete or Insert
procedure calls.

90 I ndex out of range.
The index expression of an array subscript was out of range.

91 Scalar or subrange out of range.
The value assigned to a scalar or a subrange variable was out of
range.

92 Out of integer range.
The real value passed to Trunc or Round was not within the Integer
range -32767,.32767.

FF Heap/stack collision.
A call was made to the standard procedure New or to a recursive
subprogram, and there is insufficient free memory.

RUN-TIME ERROR MESSAGES 225

H RUN-TIME ERROR MESSAGES

Notes:

226 TURBO Pascal Language Manual

I/O ERROR MESSAGES

o. % ERROR MESSAGES

An error in an input or output operation at run-time results in in I/O error. If
I/O checking is active (I compiler directive active), an I/O error causes the
program to halt and the following error message is displayed:

I/O error NN, PC=addr
Program aborted

where NN is the I/O error number, and addr is the address in the program
code where the error occurred.

If I/O error checking is passive (1$1-}), an I/O error will not cause the program
to halt. I nstead, all further I/O is suspended until the result of the I/O opera­
tion has been examined with the standard function 10result. If I/O is attemp­
ted before 10result is called after en error, a new error occurs, possibly hang­
ing the program.

The following contains explanations of all run-time error numbers. Notice that
the numbers are hexadecimal!

01 File does not exist.
The file name used with Reset. Erase, Rename, Execute, or Chain
does not specify an existing file.

02 File not open for input.
1) You are trying to read (with Read or Readln) from a file without a
previous Reset or Rewrite. 2) You are trying to read from a text file
which was prepared with Rewrite (and thus is empty). 3) You are
trying to read from the logical device LST:, which is an output-only
device.

03 File not open for output.
1) You are trying to write (with Write or Writeln) to a file without a
previous Reset or Rewrite. 2) You are trying to write to a text file
which was prepared with Reset. 3) You are trying to write to the lo­
gical device KB 0:, which is an input-only device.

I/O ERROR MESSAGES 227

I/O ERROR MESSAGES

04 File not open.
You are trying to access (with BlockRead or BlockWrite) a file with­
out a previous Reset or Rewrite.

10 Error in numeric format.
The string read from a text file into a numeric variable does not con­
form to the proper numeric format (see section 4.2).

20 Operation not allowed on a logical device.
You are trying to Erase, Rename, Execute, or Chain a file assigned to
a logical device.

21 Not allowed in direct mode.
Programs cannot be Executed or Chained from a program running in
direct mode (Le. a program activated with a Run command while
the Memory compiler option is set).

22 Assign to std files not allowed.
90 Record length mismatch.

The record length of a file variable does not match the file you are
trying to associate it with.

91 Seek beyond end-of-file.
99 Unexpected end-of-file.

1) Physical end-of-file encountered before EOF-character (Ctrl-Z)
when reading from a text file. 2) An attempt was made to read
beyond end-of-file on a defined file. 3) A Read or BlockRead is
unable to read the next sector of a defined file. Something may be
wrong with the file, or (in the case of BlockRead) you may be trying
to read past physical EOF.

FO Disk write error.
Disk full while attempting to expand a file. This may occur with the
output operations Write, WriteLn, Block Write, and Flush, but also
Read, ReadLn, and Close may cause this error, as they cause the
write buffer to 'be flushed.

F1 Directory is full.
You are trying to Rewrite a file, and there is no more room in the
disk directory.

F2 File size overflow.
You are trying to Write a record beyond 65535 to a defined file.

FF File disappeared.
An attempt was made to Close a file which was no longer present in
the disk directory, e.g. because of an unexpected disk change.

228 TURBO Pascal Language Manual

TRANSLATING ERROR MESSAGES J

J. TRANSLATING ERROR MESSAGES

The compiler error messages are collected in the file TURBO. MSG. These
messages are in English but may easily be translated into any other language
as described in the following.

The first 24 lines of this file define a number of text constants for subsequent
inclusion in the error message lines: a technique which drastically reduces the
disk and memory requirements of the error messages. Each constant is identi­
fied by a control character, denoted by a ~ character in the following listing.
The value of each constant is anything that follows on the same line. All cha­
racters are significant. also leading and trailing blanks.

The remaining lines each contain one error message, starting with the error
number and immediately followed by the message text. The message text
may consist of any characters and may include previously defined constant
identifiers (control characters). Appendix G lists the resulting messages in full.

When you translate the error messages, the relation between constants and
error messages will probably be quite different from the English version listed
here. Start therefore with writing each error mesage in full, disregarding the
use of constants. You may use these error messages, but they will require ex­
cessive space. When all messages are translated, you should find as many
common denominators as possible. Then define these as constants at the top
of the file and include only the constant identifiers in subsequent message
texts. You may define as few or as many constants as you need, the restric­
tion being only the number of control characters.

As a good example of the use of constants, consider errors 25,26, and 27.
These are defined exclusively by constant identifiers, 15 in total, but would re­
quire 101 characters if written in clear text.

The TURBO editor may be used to edit the TURBOMSG.OVR file. Control
characters are entered with the Ctrl-P prefix, i.e. to enter a Ctrl-A (~ A) into
the file, hold down the (CONTROl) key and press first p, then A. Control cha­
racters appear dim on the screen (if it has any video attributes).

Notice that the TURBO editor deletes all trailing blanks. The original message
therefore does not use trailing blanks in any messages.

TRANSLA TlNG ERROR MESSAGES 229

J.1 Error Message File Usting

J.1 Error Message File Listing

~A are not allowed
~B can not be
~C constant
~D does not
~E expression
~F identifier
~G file
~H here
~Klnteger

~LFi Ie
~NIllegal

~O or
~PUnd.efined

~Q match
~R real
~SString

~ITextfi Ie
~U out of range
~V variable
~W overf low
~x expected
~y type
~ [Inval id
~] pOinter
01'; '~x
02': '~x
03', '~x
04' ('~x
05')'~X

06' =' ~X
07' : =' ~X
08' ['~X
09'] '~X
10'. '~X
11' .. '~X
12BFXHN~X

13IX)~X

14END~X

150F~X

17THEN~X

18TO~O roWNTO~X

20Boolean~E~X

230 TURBO Pascal Language Manual

Error Message File listing

21 ~L~V~X
22~K~C~X

23~K~E~X

24~K~V~X

25~K~O~R~C~X

26~K~O~R~E~X

27~K~O~R~V~X

28Po int e r~V~ X
29Record~V~X

308 imple~Y~X
318imple~E~X

32~8~C~X

33~8~E~X

34~8~V~X

35~T~X

36Type~F~X

37Untyped~G~X

40~P label
41Unknown~F~O syntax error
42~P~]~Y in preceding~y definitions
43Duplicate~F~O label
44Type mismatch
45~C~U

46~C and CASE selector~Y~D~Q
470perand~Y(s)~D~Q operator
48~ [resul t ~Y
49~[~8 length
50~8~C length~D~Q~Y

51~[subrange base~Y
52Lower bound > upper bound
53Reserved word
54~N assignment
55~8~C exceeds line
56Error in integer~C
57Error in~R~C
58~N character in~F
60~Cs~A~H

61~Ls and~]s~A~H

62St ructured~Vs~A~H
63~Ts~A~H

64~Ts and untyped~Gs~A~H
65Untyped~Gs~A~H

66I/O~A

67~Ls must be~V parameters

TRANSLATING ERROR MESSAGES

J.1

231

J.1

68~L components~B~Gs

69~[~Odering of fields
70Set base~Y~U
71~[GOTO
72Label not within current block
73~P FORWARD procedure(s)
74INLINE error
75~N use of ABSOUITE
90~L not found
91Unexpected end of source
97Too many nested WITH's
98Memory~W

99Compi ler~W

232

Error Message File Usting

TURBO Pascal Language Manual

TURBO SYNTAX K

K. TURBO SYNTAX

The syntax of the TURBO Pascal language is presented here using the forma­
lism known as the Backus-Naur Form. The following symbols are meta­
symbols belonging to the BNF formalism, and not symbols of the TURBO
Pascal language: .

I
{}

Means "is defined as".
Means "or".
Enclose items which may be repeated zero or more times.

All other symbols are part of the language. Each syntactic construct is printed
in italics, e.g.: block and case -element. reserved words are printed in bold­
face, e.g.: array and for.

actual-parameter :: = expression I variable
adding-operator :: = + I - I or I xor
array-constant :: = (structured-constant { , structured-constant})
array-type :: = array [index-type { , index-type}] of component-type
array-variable :: = variable
assignment-statement :: = variable: = expression I

function-identifier :: = expression
base-type :: = simple-type
block :: = declaration-part statement-part
case-element :: = case-list :statement
case -label :: = constant
case-label-list :: = case-label { , case-label}
case-list :: = case-list-element {, case-list-element}
case-list-element :: = constant I constant .. constant
case-statement :: = case expression of case-element { ; case-element} end

I case expression of case-element { ; case-element}
otherwise statement { ; statement} end

complemented-factor :: = signed-factor I not signed-factor
component-type :: = type
component-variable :: = indexed-variable I field-designator
compound-statement :: = begin statement { ; statement } end
conditional-statement :: = if-statement I case -statement
constant :: = unsigned-number I sign unsigned-number I constant-identifier

I sign constant-identifier I string

TURBO SYNTAX 233

K

constant-definition-part :: = const constant-definition
{ ; constant-definition} ;

constant-definition :: = untyped-constant-definition 1

typed -constant -definition
constant-identifier :: = identifier
control-character :: = @ unsigned-integer IA character
control-variable :: = variable-identifier
declaration -part :: = {declaration -section}

TURBO SYNTAX

. declaration -section :: = label-declaration -part 1 constant-definition -part
1 type-definition-part 1 variable-declaration-part 1
procedure -and -function -declaration -part

digit :: = 0 11 1 2 1 3 14 1 5 1 6 1 7 1 8 1 9
digit-sequence :: = digit {digit}
empty:: =
empty-statement :: = empty
entire-variable :: = variable-identifier I typed-constant-identifier
expression :: = simple -expression {relational-operator simple -expression}
factor :: = variable I unsigned-constant I (expression) 1

function -designator 1 set
field-designator :: = record-variable. field-identifier
field-identifier :: = identifier
field-list :: = fixed-part I fixed-part; variant-part I variant-part
file-identifier :: = identifier
file -identifier-list :: = empty I (file -identifer { ,file -identifer }
file-type :: = file of type
final-value :: = expression
fixed-part :: = record-section { ; record-section}
for-list :: = initial-value to final-value I initial-value downto final-value,
for-statement :: = for control-variable: = for-list do statement
formal-parameter-section :: = parameter-group I var parameter-group
function-declaration :: = function-heading block;
function -designator :: = function -identifier I function -identifer

(actual-parameter { ,actual-parameter})
function -heading :: = function identifier: result-type; I

function identifier (formal-parameter-section
{ ,formal-para meter-section }) : result -type;

function -identifier:: = identifer
goto -statement :: = goto label
hexCtigit :: = digit I A I B I C I 0 I ElF
hexdigit-sequence :: = hexdigit {hexdigit }
identifier :: = letter {/etter-or-digit }

-.., identifier-list :: = identifier { ,identifier}
if-statement :: = if expression then statement { else statement}
index-type :: = simple-type

234 TURBO Pascal Language Manual

TURBO SYNTAX

indexed-variable :: = array-variable [expression { ,expression}]
initial-value :: = expression
inline-list-element :: = unsigned-integer I constant-identifier I

variable -identifier I location -counter-reference
inline-statement :: = inlineinline-list-element { ,inline-list-element }
label :: = letter-or-digit {Ietter-or-digit }
label-declaration -part :: = label label { , label} ;
letter :: = A I B I C I DIE I FIG I H II I J I K I LIM I

NIOIPIQIRISITIUIVIWIXIYIZI
alblcidielflglhliljlkillmi
nlolplqlrlsltlulvlwlxlylzl __

letter-or-digit :: = letter I digit
location-counter-reference :: =. I • sign constant
multiplying-operator :: = * 1/ I div I mod I and Ishl Ishr
parameter-group :: = identifier-list: type-identifier
pointer-type :: = ~ type-identifier
pointer-variable :: = variable
procedure-and-function-declaration-part :: =

K

{procedure -or-function -declaration }
procedure-declaration :: = procedure-heading block;
procedure-heading :: = procedure identifier ; I procedure identifier

(formal-parameter-section
{ , formal-parameter-section }) ;

procedure-or-function-declaration :: = procedure-declaration I
function -declaration

procedure-statement :: = procedure-identifier Iprocedure-identifier
(actual-parameter { , actual-parameter})

program-heading :: = empty I program program-identifier
file -identifier-list

program :: = program-heading block.
program-identifier :: = identifier
record-constant :: = (record-constant-element

{ ; record-constant-element })
record-constant-element :: = field-identifier: structured-constant
record-section :: = empty I field-identifier { , field-identifier} : type
record-type :: = record field-list end
record-variable :: = variable
record-variable-list :: = record-variable { , record-variable}
referenced-variable :: = pointer-variable ~
relational-operator :: = = I <> 1<= I> = I < I> I in
repeat-statement :: = repeat statement { ; statement} until expression
repetitive -statement :: = while -statement I repeat-statement I for-statement
result-type :: = type-identifier
scalar-type :: = (identifier { , identifier})

TURBO SYNTAX 235

K

scale -factor :: = digit-sequence 1 sign digit-sequence
set :: = [{set-element}]
set-constant :: = [{set-constant-element }]
set-constant-element :: = constant 1 constant .. constant
set-element :: = expression 1 expression .. expression
set-type :: = set of base-type
sign :: = + 1-
signed-factor :: = factor 1 sign factor

TURBO SYNTAX

simple -expression :: = term {adding-operator term}
simple-statement :: = assignment-statement Iprocedure-statement 1

goto -statement 1 inline -statement 1 empty-statement
simple-type :: = scalar-type Isubrange-type 1 type-identifier
statement :: = simple-statement 1 structured-statement
statement-part :: = compound-statement
string :: = {string-element }
string-element :: = text-string 1 control-character
string-type :: = string [constant]
structured-constant :: = constant 1 array-constant 1 record-constant 1

set-constant
structured-constant-definition :: = identifier: type = structured-constant
structured-statement :: = compound-statement 1 conditional-statement 1

repetitive -statement 1 with -statement
structured-type :: = unpacked-structured-type 1

packed unpacked-structured-type
subrange -type :: = constant .. constant
tag-field :: = empty 1 field-identifier:
term :: = complemented-factor {multiplying-operator complemented-factor}
text-string :: = . {character} •
type-definition :: = identifier = type
type -definition -part:: = type type -definition { ; type -definition} ;
type-identifier :: = identifier
type ::= simple-type Istructured-type Ipointer-type
typed-constant-identifier :: = identifier
unpacked-structured-type :: = string-type 1 array-type 1 record-type 1

set-type 1 file-type
unsigned-constant :: = unsigned-number Istring 1 constant-identifier 1 nil
unsigned-integer :: = digit-sequence 1 $ hexdigit-sequence
unsigned-number :: = unsigned-integer 1 unsigned-real
unsigned-real :: = digit-sequence. digit-sequence 1

digit-sequence. digit-sequence E scale-factor 1
digit-sequence E scale-factor

untyped-constant-definition :: = identifier = constant
variable :: = entire-variable 1 component-variable Ireferenced-variable

236 TURBO Pascal Language Manual

TURBO SYNTAX

variable -declaration :: = identifier-list: type I
identifier-list: type absolute constant

variable-declaration-part :: = var variable-declaration
{ ; variable-declaration} ;

variable-identifier :: = identifier
variant :: = empty I case-label list : (field-list)
variant-part :: = case tag-field type-identifier of variant { ; variant }
while -statement :: = while expression do statement
with-statement :: = with record-variable-list do statement

TURBO SYNTAX

K

237

K TURBO SYNTAX

Notes:

238 TURBO Pascal Language Manual

ASCII TABLE L

L. ASCII TABLE

DED HEX CHAR DED HEX CHAR DED HEX CHAR DED HEX CHAR

0 00 ~@ NUL 32 20 SPC 64 40 @ 96 60
1 01 ~A SOH 33 21 ! 65 41 A 97 61 a
2 02 ~B STX 34 22

..
66 42 B 98 62 b

3 03 ~C EI'X 35 23 u 67 43 C 99 63 c
4 04 ~D EDT 36 24 $ 68 44 D 100 64 d

5 05 ~E mQ 37 25 % 69 45 E 101 65 e
6 06 ~F ACK 38 26 8e 70 46 F 102 66 f
7 07 ~G BEL 39 27 , 71 47 G 103 67 g
8 08 ~H BS 40 28 (72 48 H 104 68 h
9 09 ~ I HI' 41 29) 73 49 I 105 69 i

10 8A ~J LF 42 2A * 74 4A J 106 6A j
11 0B ~K VT 43 2B + 75 4B K 107 6B k
12 C:XJ ~L FF 44 2C , 76 4C L 108 6C 1
13 0D ~M CR 45 2D - 77 4D M 109 6D m
14 0E ~N SO 46 2E 78 4E N 110 6E n

15 0F ~O SI 47 2F / 79 4F 0 III 6F 0

16 10 ~p DLE 48 30 0 80 50 P 112 70 P
17 11 ~Q 001 49 31 1 81 51 Q 113 71 q
18 12 ~R 002 50 32 2 82 52 R 114 72 r
19 13 ~S 003 51 33 3 83 53 S 115 73 s
20 14 ~T 004 52 34 4 84 54 T 116 74 t
21 15 ~U NAK 53 35 5 85 55 U 117 75 u
22 16 ~V 8YN 54 36 6 86 56 V 118 76 v
23 17 ~w ErE 55 37 7 87 57 W 119 77 w
24 18 ~X CAN 56 38 8 88 58 X 120 78 x
25 19 ~y :EM 57 39 9 89 59 Y 121 79 Y
26 lA ~z SUB 58 3A : 90 5A Z 122 7A z
27 IB ~[ESC 59 3B ; 91 5B [123 7B {

28 lC ~\ FS 60 3C < 92 5C \ 124 7C I
29 ID ~] GS 61 3D = 93 5D] 125 7D }

30 IE ~~ RS 62 3E > 94 5E ~ 126 7E -
31 IF ~

- US 63 3F ? 95 5F - 127 7F DEL

ASCII TABLE 239

L ASCII TABLE

Notes:

240 TURBO Pascal Language Manual

HELP!!! M

M. HELP!! !

This appendix lists a number of the most commonly asked questions and their
answers.

0: How do I use the system?
A: Please read the manual, specifically chapter 1 .

0: Is TURBO an interpreter like UCSD?
A: No, it generates ultra-fast machine code.

0: Do I need TURBO to run programs developed in TURBO Pascal?
A: No, you can make a .COM or .CM D file.

0: How many lines of code can the compiler handle.
A: No limit. The object code, however, cannot exceed 64 KB.

0: How many significant digits does TURBO support in floating point?
A: 11.

0: Why do I get garbage on the screen when I start the TURBO editor.
A: You have not installed TURBO for your systel'!1.

0: What do I do when I run out of space using the editor?
A: Split your source code (see chapter 17 on include files).

0: What do I do when I run out of space while compiling?
A: Use the$1 directive and/or generate a .COM or .CMD file.

0: How do I make a .COM or .CMD file?
A: Type 0 from the main menu, then type C.

0: What do I do if I run out of space anyway?
A: Use the Chain facility described in sections A.1 0 and B.1.9 .

0: What do I do when the compiler generates too much code?
A: Read the appendicies about compiler switches and .CHN files.

HELP!!! 241

M HELP!!!

Q: Why don't Eofand Eoln work?
A: Set the B compiler directive off: {$B-l.

Q: I don't want Ctrl-C to stop my program, or Ctrl-S to stop screen output.
How do I prevent that?

A: Set the C compiler directive off: {$C-l.

Q: Why do my recursive procedures not work?
A: Set the A compiler directive off: {$A-l (CP/M-SO only).

242 TURBO Pascal Language Manual

TERMINAL INSTALLATION N

N. TEIRMINAL DNSTAlLATOON

Before you use TURBO Pascal, it must be installed to your particular termi­
nal, i.e. provided with information regarding control characters required for
certain functions. This installation is easily performed using the program
TlNST which is described in this chapter.

After having made a work-copy, please store your distribution diskette safely
away and work only on the copy.

Now start the installation by typing TlNST at your terminal. Select Screen in­
stallation from the main menu. Depending on your version of TURBO Pascal,
the installation proceeds as described in the following two sections.

N.1 IBM PC Display Selection

If you use TURBO Pascal without installation, the default screen set-up will
be used. You may override this default by selecting another screen mode from
this menu:

Choose one of the following displays:

0) Default display mode
1) Monochrome display
2) Color display 80x25
3) Color display 40x25
4) b/w display 80x25
5) b/w display 40x25

Which display Center no. or ~X to exit) ~

Figure N-1: IBM PC Screen Installation Menu

Each time TURBO Pascal runs, the selected mode will be used, and you will
return to the default mode on exit.

TERMINAL INS TA LLA TlON 243

N.2 Non-IBM PC Installation

N.2 Non-IBM PC Installation

A menu listing a number of popular terminals will appear, inviting you to
choose one by entering its number:

Choose one of the following terminals:

1) ADDS 20/25/30 15) Lear-Siegler ADM-31
2) ADDS 40/60 16) Liberty
3) ADDS Viewpoint-lA 17) Morrow MOT-20
4) ADM 3A 18) Otrona Attache
5) Ampex D80 19) Qume
6) ANSI 20) Soroc IQ-l20
7) Apple/graphics 21) Soroc new models
8) Hazeltine 1500 22) Teletext 3000
9) Hazeltine Esprit 23) Televideo 912/920/925

10) IBM PC CCP/M b/w 24) Visual 200
11) IBM PC CCP/M color 25) Wyse WY-100/200/300
12) Kaypro 10 26) Zenith
13) Kaypro II and 4 27) None of the above
14) Lear-Siegler ADM-20 28) Delete a definition

Which terminal? (Enter no. or ~x to exit):

Figure N-2: Terminal Installation Menu

If your terminal is mentioned, just enter the corresponding number, and the
installation is complete. Before installation is actually performed, you are
asked the question:

Do you want to modify the definition before installation?

This allows you to modify one or more of the values being installed as descri­
bed in the following. If you do not want to modify the terminal definition, just
type N, and the installation completes by asking you the operating frequency
of your CPU (see last item in this appendix).

If your terminal is not on the menu, however, you must define the required
values yourself. The values can most probably be found in the manual sup­
plied with your terminal.

244 TURBO Pascal Language Manual

Non-IBM PC Installation N.2

Enter the number corresponding to None of the above and answer the
questions one by one as they appear on the screen.

In the following, each command you may install is described in detail. Your
terminal may not support all the commands that can be installed. If so, just
pass the command not needed by typing RETURN in response to the prompt.
If Delete line, Insert line, or Erase to end of line is not installed, these func­
tions will be emulated in software, slowing screen performance somewhat.

Commands may be entered either simply by pressing the appropriate keys or
by entering the decimal or hexadecimal ASCII value of the command. If a
command requires the two characters 'ESCAPE' and' =', may:

either

or

Press first the Esc key, then the =. The entry will be ecchoed with
appropriate labels, i.e. <ESC> =.
Enter the decimal or hexadecimal values separated by spaces. H ex­
adecimal values must be preceded by a dollar-sign. Enter
e.g. 27 61 or $lB 61 or $lB $30 which are all equivalent.

The two methods cannot be mixed, i.e. once you have entered a non-numeric
character, the rest of that command must be defined in that mode, and vise
versa.

A hyphen entered as the very first character is used to delete a command, and
echoes the text Nothing.

Terminal type:

Enter the name of the terminal you are about to install. When you complete
TlNST, the values will be stored, and the terminal name will appear on the
initial list of terminals. If you later need to re-install TURBO Pascal to this ter­
minal, you can do that by choosing it from the list.

TERMINAL INSTALLA TlON 245

N.2 Non-IBM PC Installation

Send an initialization string to the terminal?

If you want to initialize your terminal when TURBO Pascal starts (e.g. to
download commands to programmable function keys), you answer V for yes
to this question. If not, just hit RETURN.

If you answer V, you may choose between entering the command directly or
defining a file name containing the command string. The latter is a good idea
if the initialization string is long, as e.g. a string to program a number of func­
tion keys would be.

Send a reset string to the terminal?

Here, you may define a string to be sent to the terminal when TURBO Pascal
terminates. The description of the initialization command above applies here.

CURSOR LEAD-IN command:

Cursor Lead-in is a special sequence of characters which tells your terminal
that the following characters are an address on the screen on which the cur­
sor should be placed. When you define this command, you are asked the fol­
lowing supplementary questions:

CURSOR POSITIONING COMMAND to send between line and
column:

Some terminals need a command between the two numbers defining
the row- and column cursor address.

CURSOR POSITIONING COMMAND to send after line and co­
lumn:

Some terminals need a command after the two numbers defining the
row- and column cursor address.

Column first?

Most terminals require the address on the format: first ROW, then CO­
LUMN. If this is the case on your terminal, answer N. If your terminal
wants COLUMN first, then ROW, then answerV.

OFFSET to add to LINE

Enter the number to add to the LINE (ROW) address.

246 TURBO Pascal Language Manual

Non-IBM PC Installation N.2

OFFSET to add to COLUMN

Enter the number to add to the COLUM N address.

Binary address?

Most terminals need the cursor address sent on binary form. If that is
true for your terminal, enter V. If your terminal expects the cursor ad­
dress as ASCII digits, enter N. If so, you are asked the supplementary
question:

2 or 3 ASCII digits?

Enter the number of digits in the cursor address for your termi­
nal.

CLEAR SCREEN command:

Enter the command that will clear the entire contents of your screen, both fo­
reground and background, if applicable.

Does CLEAR SCREEN also HOME cursor?

This is normally the case; if it is not so on your terminal, enter N, and define
the cursor HOME command.

DELETE LINE command:

Enter the command that deletes the entire line at the cursor position.

INSERT LINE command:

Enter the command that inserts a line at the cursor position.

ERASE TO END OF LINE command:

Enter the command that erases the line at the cursor position from the cursor
position through the right end of the line.

TERMINAL INSTALLA TlON 247

N.2 Non-IBM PC Installation

START OF 'LOW VIDEO' command:

If your terminal supports different video intensities, then define the command
that initiates the dim video here. If this command is defined, the following
question is asked:

START OF 'NORMAL VIDEO' command:

Define the command that sets the screen to show characters in
'normal' video.

Number of rows (lines) on your screen:

Enter the number of horizontal lines on your screen.

Number of columns on your screen:

Enter the number of vertical column positions on your screen.

Delay after CURSOR ADDRESS (0-255 ms):
Delay after CLEAR, DELETE, and INSERT (0-255 ms):
Delay after ERASE TO END OF LINE and HIGHLIGHT On/Off (0-255
ms):

Enter the delay in milliseconds required after the functions specified. RETURN
means 0 (no delay).

Is this definition correct?

If you have made any errors in the definitions, enter N. You will then return to
the terminal selection menu. The installation data you haver just entered will
be included in the installation data file and appear on the terminal selection
menu, but installation will not be performed.

When you enterV in response to this question, you are asked:

Operating frequency of your microprocessor in M Hz (for delays):

As the delays specified earlier are depending on the operating frequency of
your CPU, you must define this value.

The installation is finished, installation data is written to TURBO Pascal, and
you return to the outer menu (see section 1.6). Installation data is also saved
in the installation data file and the new terminal will appear on the terminal
selection list when you run TlNST in future.

248 TURBO Pascal Language Manual

SUBJECT INDEX

o. SUBJECT ONDtEX

A
A Note on Control Characters,

21
A-command, 175, 176
A-compiler directive, 170
Abort command, 34
Abs, 132, 206
Absolute Address Functions,

178
Absolute Code, 216
Absolute value, 132
Absolute variables, 144,

146,177
Adding operators, 51 , 53
Addr, 147, 178,209
Allocating Variables (New),

116
Arccus tangent, 132
ArcTan, 132, 206
Arithmetic functions, 132,

206
Array component, 75
Array Constants, 90
Array Definition, 75
Array of characters, 109
Array Subscript Optimization,

148
Arrays, 75, 161, 190
Arrays and Records, 165, 193
Assign, 94, 207
Assigning a value to a

pointer, 181
Assignment operator, 37
Assignment Statement, 55
Auto Indentation, 35
Auto tab on/off switch, 31

SUBJECT INDEX

18
Backspace, i 07
Backup, 16
r.AK files, 1 6
Basic Data Types, 157, 187
Basic Symbols, 37
BDOS,145
Bdos function, 153,209
Bdos procedure, 153,208
BdosHL function, 153,209
BEFORE USE, 5
Begin block, 28
Bios function, 154,209
Bios procedure, 154,208
BiosHL function, 154,209
Blanks, 39
Block, 121
Block Commands, 28

Begin block, 28
Copy block, 29
Delete block, 29
End block, 28
H ide/display block, 29
Mark single word, 28
Move block, 29
Read block from disk, 29
Write block to disk, 30

BlockRead, 112,207
B 10ckWrite, 112, 207
Boolean, 42
Brackets, 37
Byte, 41

o

249

a

C
C-command, 16, 143, 174
Call by reference, 122
Call by value, 121
Case statement, 58
Chain, 149, 182, 207
Chain and Execute, 149,182
Char, 42
Character array constants,

90
Character Arrays, 77
Character left, 23
Character right, 23
Characters, 73
Chr, 135,206
ClrScr, 127, 208
Close, 96, 207
ClrEol, 127, 208
Code segment, 175
Col(umn) indicator in editor,

18
Comment, 37, 39,45
Common Compiler Directives,

214
Common data, 150, 183
Common features, 173
Compilation in Memory, 166
Compilation To Disk, 167
Compile Command, 16
Compiler Directive Defaults,

5
Compiler Directives, 46

in include files, 142

250

A: Absolute code, 170,
216

8: I/O device selection,
107,214

8: input/output mode
selection, 1 04

C: control character
interpret, 214

I: I/O error handling,
114,214

I: Include, 15, 141
I: include files, 214

SUBJECT INDEX

K: stack check, 216
R: Range checking, 65,

73,76,215
U: user interrupt, 215
V: Type checking, 123,

215
W: With statement nesting,

216
X: Array optimization,

148,216
Compiler error messages, 221
compiler Options, 17, 143,

173
Compound Statement, 57
Concat, 71,207
Concatenation, 67
Concurrent CP/M, 176
Conditional Statements, 57
Constant Definition Part, 48
Constants

typed, 89
Control character, 10, 21,

31,32,45
Control character prefix, 34
Conversion, 65
Copy, 71,207
Copy block, 29
Cos, 132, 206
Cosine, 132
CP/M Function Calls, 153
CP/M-80 Compiler Directives,

216
CP/M -86/ MS-DOS / PC-DOS

Compiler Directives, 216
CPU stack, 170, 195
CR

as numeric input, 107
CrtExit, 1 28, 208
Crtlnit, 127, 208
Cseg,178
Ctrl-A,23
Ctrl-A in search strings, 31,

32
Ctrl-C, 214, 215
Ctrl-D,23

TURBO Pascal Language Manual

SUBJECT INDEX

Ctrl-E,23
Ctrl-F,23
Ctrl-Q Ctrl-B, 25
Ctrl-O Ctrl-C, 25
Ctrl-O Ctrl-D, 25
Ctrl-O Ctrl-E, 25
Ctrl-O Ctrl-K, 25
Ctrl-O Ctrl-P, 26
Ctrl-O Ctrl-R, 25
Ctrl-O Ctrl-S, 25
Ctrl-O Ctrl-X, 25
Ctrl-R,24
Ctrl-S,23
Ctrl-W,23
Ctrl-X, 23, 107
Ctrl-Z,24
Cursor Movement, 34
Cursor Movement Commands, 21

Character left, 23
Character right, 23
Line down, 23
Line up, 23
Page down, 24
Page up, 24
Scroll down, 24
Scroll up, 23
To beginning of block, 25
To bottom of screen, 25
To end of block, 25
To end of file, 25
To last position, 26
To left on line, 25
To right on line, 25
To top offile, 25
To top of screen, 25
Word left, 23
Word right, 23

SUBJECT INDEX

lI)
D-command, 17, 175
Data conversion, 106
Data segment, 175
Data Structures, 161, 189
Data transfer between

programs, 1 50, 183
Declaration Part, 47
Declared scalar types, 41
Defining a Pointer Variable,

115
DEL, 107
Delay, 128,208
Delete, 33, 69, 207
Delete a command, 245
Delete block, 29
Delete character under cursor,

27
Delete commands, 27

Delete character under
cursor, 27

Delete left character, 27
Delete line, 27
Delete right word, 27
Delete to end of line, 28

Delimiters, 39
DelLine, 128, 208
Deviations from standard

Pascal, 37, 47 48,58,
65,67,89,219

Digits, 37
Direct memory access, 147,

179
Direct port access, 148, 180
Directory Command, 17
Discriminated unions, 83
Disk change, 14
Disk Files, 162, 190
Disk-reset, 14
Dseg,179
Dynamic variables, 115, 219

o

251

o

E
E-command, 16, 145
Echo, 102, 104

of CR, 107,108
Edit Command, 16
Edit modes

Insert, 26
Overwrite, 26

Editing commands, 9, 19
Character left, 23
Character right, 23
Line down, 23
Line up, 23
Page down, 24
Page up, 24
Scroll down, 24
Scroll up, 23
To beginning of block, 25
To bottom of screen, 25
To end of block, 25
To end of file, 25
To last position, 26
To left on line, 25
To right on line, 25
To top of file, 25
To top of screen, 25
Word left, 23
Word right, 23

Editing of input, 107
Editor, 18

Col,18
File name, 1 9
Indent, 19
Insert, 19
Line, 18

Element (of set), 85
Else statement, 58
Empty Statement, 56
End Address, 145
End block, 28
End Edit, 35
End edit command, 30
End of line, 39
EOF,97, 106,107, 113,207
EOF with text files, 101

252

SUBJECT INDEX

Eoln, 106, 107, 207
Erase, 96, 207
Error Message File Listing,

230
Error message translation,

229
Error messages

Compiler, 221
1/0,227
run-time, 225

Execute, 149, 182, 207
eXecute Command, 17
Execution error messages, 225
Execution in Memory, 167
Execution of A Program File,

168
Exist function, 96
Exp, 133, 206
Exponential, 133
Extended File Size, 200
Extensions, 1
External procedures, 162,

191
External Subprograms, 149,

181

TURBO Pascal Language Manual

SUBJECT INDEX

f
F-command, 145, 176
False, 42
Field constants, 92
Field list, 79
Fields, 79
File handling routines, 207
File identifier, 93
File Interface Blocks, 159,

198,202
File name indicator in editor,

19
File names, 14
File of Byte, 200
File parameters, 122
File pointer, 93
File Standard Functions, 97
File type, 92, 93
File Type Definition, 93
FilePos, 97, 113, 207
Files On The Distribution

Disk, 6
FileSize, 97, 113,207
FileSize

with text files, 101
FillChar, 129,208
Find, 31
Find and replace, 32
Find Runtime Error, 145, 176
Flush, 95, 200
Flush

with text files, 101
For statement, 60
Foreign languages, 229
Forward References, 138
Frac, 133, 206
Fractional part, 133
Free memory, 175, 176
Free Unions, 83
Function Calls, 196,201
Function Declaration, 130
Function Designators, 54
Function Results, 165, 194
Functions, 130

SUBJECT INDEX

G
Get and Put, 219
GetMem, 119,208
Goto Statement, 56,220
GotoXY, 128,208

!HI
H-command, 143, 174
Halt procedure, 208
Heap, 116,170, 175,194
Heap Control Procedures and

Functions, 208
H eapPtr, 1 68, 170, 194
Hi,136
Hi function, 209
Hide/display block, 29
Highlighting, 13
Home position, 128

o
1/0,106
I/O checking, 114
I/O error handling, 114
I/O error messages, 227
I/O mode selection, 104

o

I/O Procedures and Functions, 205
I/O to textfiles, 106
IBM PC Display Selection, 243
IBM PC Screen Installation, 8
Identifiers, 43
If statement, 57
In-line M'achine Code, 152,

184
Include compiler directive,

15
Indent indicator in editor,

19
Indentation, 31

in this manual, 4
Initialized variables, 89
Input without echo, 102, 104

253

a

Input
characters, 106
editing, 107
numeric values, 107
strings, 107

Insert, 69, 207
Insert and Delete Commands,

26
Insert commands, 27
I nsert indicator in editor,

19
Insert line, 27
Insert mode on/off switch, 26
InsLine, 128, 208
Installation, 8
Installation of Editing

Commands, 9
Int, 133,206
Integer, 41,43
Integer overflow, 41
Integer part, 133
Internal Data Formats, 157,

187
Interrupt Handling, 156, 186
Intersection, 85
Intr, 186
Introduction, 1
IOresult, 114, 209

K
KeyPressed, 136, 209

254

SUBJECT INDEX

L
L-command,14 I

Label Declaration Part, 48
Labels, 56
Large programs, 141
Length, 72, 207
Length of strings, 67
Letters, 37
Limitations on sets, 85
Line break, 31
Line down, 23
Line indicator in editor, 1 8
Line Restore, 35
Line up, 23
Ln, 133, 206
Lo, 136, 209
Local variables as

var-parameters, 219
Location counter reference,

152,185
Logarithm, 133
Logged Drive Selection, 14
Logical Devices, 102
LongFilePos, 200
LongFileSize,200
LongSeek, 200
Lower case, 43
LowVideo, 129, 208

TURBO Pascal Language Manual

SUBJECT INDEX 0

ri\JiJ Miscellaneous Procedures and
M -command, 15, 143, 1 74 Functions, 208
Main File Selection, 15 Move, 129,208
Margins in this manual, 4 Move block, 29
Mark and Release, 116 Multi-user system, 95
Mark single word, 28, 34 Multidimensional Array
Maximum Free Dynamic Memory, Constants, 91

176 Multidimensional Arrays, 76
MemArray, 147, 179 Multiplying operators, 51,
MemAvail, 117, 148, 180, 52

208
Member (of se!), 85

N Memory / Com file / cHn-file,
143,174 Natural logarithm, 133

Memory access, 147, 179 Nesting of With statements,
Memory Management, 166 81,148
Memory Maps, 166 New, 116,208
Menu Nil,116

C-command, 16 Non-IBM PC Screen
D-command,17 Installation, 9, 244
E-command,16 NormVideo, 129,208
L-command,14 Not, 51,52
M -command, 15 Numbers, 43
O-command, 143, 173 Numeric input, 107
Q-command,17
R -command, 16

0 S-command,16
W-command,14 O-command, 143, 173, 175
X-command, 17 Obtaining the value of a

Minimum Code Segment Size, pointer, 181
175 Odd, 134, 206

Minimum Data Segment Size, Ofs,178
175 Oops, 3'1

Minimum Free Dynamic Memory, Operations on Files, 94, 200
175 Operations on Text Files, 100

Miscellaneous editing commands Operator precedence, 51
Abort command, 34 Operators, 51
Auto tab on/off, 31 Options, 143, 173
Control character prefix,

34
End edit, 30
Find, 31
Find and replace, 32
Repeat last find, 33
Restore line, 31
Tab, 30

SUBJECT INDEX 255

o

Options menu
C-command, 143, 174
D-command,175
E-command,145
F-command, 145, 176
H -command, 143, 174
I-command, 175, 176
M-command, 143, 174
O-command,175
S-command,144

Ord, 135, 149, 180,206,208
Ordinal value, 135
Overflow

integer, 41
real, 42

Overwrite/insert, 26

p
Packed Variables, 220
Page down, 24
Page Procedure, 220
Page up, 24
Paragraph, 175, 176
Parameters, 121, 162, 191

value, 121
variable, 122, 123

Pointer Related Items, 148,
180

Pointer symbol, 11 5
Pointer types, 92
Pointer Values, 180
Pointers, 115, 160, 164,

189, 193
Pointers and Integers, 149
Port access, 148, 1 80
Port Array, 148, 180
Pos, 72, 207
Position

with text files, 101
Pred, 134, 206
Predecessor, 134
Predefined Arrays, 77, 147,

179
Procedural Parameters, 220

256

SUBJECT INDEX

Procedure and Function
Declaration Part, 50

Procedure Declaratron, 125
Procedure Statement, 56, 121
Procedures, 125

Assign, 94
Close, 96
Delete, 69
Erase, 96
Flush, 95
Insert, 69
Read, 95
recursive, 125
Rename, 96
Reset, 94
Rewrite, 94
Seek, 95
Str,70
Val, 70
Write, 95

Program Heading, 47
Program lines, 39
Ptr, 149, 180, 208

Q
Q-command, 17
Quit Command, 17

R
R-command,16
Random, 136, 208
Random access files, 162,

199,204
Random(Num), 136
Randomize, 129, 208
Range Checking, 65
Read block from disk, 29
Read Procedure, 95, 106,

132,205
Read without echo, 102, 104
Readln Procedure, 108,132,

205
Real overflow, 42

TURBO Pascal Language Manual

SUBJECT INDEX

Reals, 42,44, 157, 163,
188, 193

Record Constants, 91
Record Definition, 79
Record type, 79
Records, 161, 190
RecurPtr, 1 68, 170
Recursion, 125, 170,216,

219
Recursion stack, 170
Recursion

Local variables as
var-parameters, 219

Relational operators, 37,
51,53

Relative complement, 85
Relaxations on Parameter Type

Checking, 123
Release procedure, 208
Rename, 96
Rename procedure, 207
Repeat last find, 33
Repeat Statement, 61
Repetitive Statements, 59
Reserved Words, 37
Reset, 94, 207
Restore line, 31
RETURN, 107
Retype, 65
Rewrite, 94, 207
Root program, 175
Round, 135,206
RUBOUT,107
Run Command, 16
Run-time error messages, 225
Run-time range checking, 65,

73, 76

SUBJECT INDEX

S
S-command, 16, 144
Save Command, 16
Scalar functions, 134, 206
Scalar Type, 63
Scalars, 157, 163, 187,

193
Scope, 125
Scope

of identifiers, 49
of labels, 56

Screen Related Procedures,
208

Scroll down, 24
Scroll up, 23
Search, 31
Seek, 95, 113,207

with text files, 101
Seg,178
Set158, 164, 189,193
Set Assignments, 88
Set Constants, 92
Set Constructors, 86
Set Expressions, 86
Set operations, 85
Set Operators, 87
Set Type Definition, 85
Shared data, 150, 183
Simple Statements, 55
Sin, 133,206
Sine, 133
SizeOf, 137,209
Space Allocation, 119
Special symbols, 37
Sqr, 134, 206
Sqrt, 134, 206
Square, 134
Square root, 134
Sseg,179
Stack, 175
StackPtr, 1 68, 170
Standard Files, 103

o

257

o

Standard Functions, 132
Abs, 132
Addr, 147, 178
ArcTan, 132
Bdos, 153
Bios, 154
BiosHL,154
Chr, 135
Cos, 132
Cseg, 178
Dseg, 179
EOF,113
Exp, 133
FilePos, 113
FileSize, 113
Frac, 133
Hi,136
Int,133
IOresult, 114
KeyPressed, 136
Ln,133
LO,136
MemAvail,117
Odd,134
Ofs, 178
Ord, 135, 149, 180
Pred,134
Ptr, 149, 180
Random, 136
Random(NumL 136
Round,135
Seg, 178
Sin,133
SizeOf,137
Sqr, 134
Sqrt, 134
Sseg, 179
Succ, 134
Swap, 137
Trunc, 135
UpCase, 137

Standard Identifiers, 38,
146, 177, 196, 201

258

SUBJECT INDEX

Standard Procedures, 127
Bdos, 153
Bios, 154
Chain, 149, 182
CirEoI,127
ClrScr, 127
CrtExit, 128
Crtlnit, 127
Delay, 128
DelUne, 128
Execute, 149, 182
FillChar, 129
GotoXY, 128
InsUne, 128
Intr, 186
LowVideo, 129
Move, 129
New,116
NormVideo, 129
Randomize, 129
Read, 106
Seek,113

Standard scalar types, 41
Start Address, 144
Starting TURBO Pascal, 7
Statement Part, 50, 55
Statement-separator, 55
Static variables, 115
Str, 70, 207
String Assignment, 68
String concatenation, 67
String Expressions, 67
String Functions, 71
String indexing, 73
String manipulation, 67
String Procedures, 69
String Procedures and

Functions, 207
String Type Definition, 67
Strings, 44, 158, 164,

188,193
Strings and Characters, 73
Structured Statement~, 57
Structured Typed Constants,

90

TURBO Pascal Language Manual

SUBJECT INDEX 0

Sub-program, 121 Untyped Variable Parameters,
Subrange,59 123
Subrange Type, 64 UpCase, 137,209
Succ, 134, 206 Upper case, 43
Successor, 134 Upper left corner of screen,
Swap, 137,209 128

User Writte n I/O Drive rs,

T
155, 196, 201

Using Files, 97
Tab, 30, 35 Using Pointers, 117
Tag field, 82
Terminal installation, 9

V Text File Input and Output,
106 Val, 70, 207

Text Files, 100, 162, 191 Value Parameters, 121, 163,
The empty set, 86 192
To beginning of block, 25 Variable Declaration Part, 49
To bottom of screen, 25 219
To end of block, 25 Variable Parameters, 122,
To end of file, 25 123,163,192
To last position, 26 Variables, 49, 115
To left on line, 25 absolute, 146, 177
To right on line, 25 Variant Records, 82
To top of file, 25
To top of screen, 25

W TPA,145
Trailing blanks, 25, 34 W -command, 14
Transfer functions, 135,206 While statement, 61
Translation of error messages, With Statement, 81, 148, 180

229 Word left, 23
True, 42 Word right, 23
Trunc, 135,206 WordStar compatibility, 9
Type checking, 123 Work File Selection, 14
Type Conversion, 65 Write, 95
Type Definition Part, 49 Write block to disk, 30
Typed constants, 89 Write parameters, 109

Write Procedure, 109, 132,

IUl
205

Writeln Procedure, 111, 132,
Unary minus, 51 205
Unclusion,87
Unions, 83, 85

)(Unstructured Typed Constants,
89 X -command, 17

Untyped Files, 112

SUBJECT INDEX 259

TURBO TOOLBOX©
POWERTOOLS FOR TURBO PASCAL

We've crafted some special tools to help you create the best
Pascal programs in the least amount of time. Designed to
compliment the power and speed of Turbo Pascal, these are
functioning modules created to save you from the "rewriting
the wheel" syndrome.

B + Trees on Disk
The fastest way to implement searches in records. Perfect
for databases, address books or any other applications where
you need to search through information for data. And on disk
means you won't be cluttering RAM. Source code included!!!

Quicksort on Disk
The fastest way to sort. Preferred by knowledgeable profes­
sionals. Available for you now with commented source code.

GINST (General Installation Program)
Now ... the programs you write with Turbo Pascal can have
a terminal installation module just like Turbo's! Saves hours
of work and research, and adds tremendous value to
everything you write.

Turbo Toolbox ©

Available May, 1984

To Order
TURBO TOOLBOX©
Mail check, money order, VISA or
MASTERCARD number and
expiration date to:

D) BORlAnD
.)) INTERNATIONAL
4113 Scotts Valley Drive
Scotts Valley, California 95066

$49.95 (plus $5 shipping and
handling for U.S. orders ... $15
shipping and handling outside
U.S.) (California residents add
6% sales tax).

