

basic
compiler
user's manual

basic
compiler
user's man ual

BASIC Compiler Command Format and Switches

Procedures for Using the BASIC Compiler

Sample Compilation

Error Messages

© Microsoft, 1979

8102-510-01

Microsoft
BASIC Compiler User's Manual

CONTENTS

CHAPTER 1 BASIC Compiler Command Scanner

1 • 1 Command Format
1 • 1 • 1 BASIC Compilation Switches

CHAPTER 2 Using the BASIC Compiler

2.1 Procedure
2.2 Sample Compilation

CHAPTER 3 Error Messages

3.1 BASIC Compiler Error Messages
3.2 BASIC Runtime Error Messages

CHAPTER 1

BASIC COMPILER COMMAND SCANNER

1.1 COMMAND FORMAT

To run the BASIC Compiler, type BASCOM followed by a
carriage return. (For users with 32K CP/M systems, type
BASCOM32 instead of BASCOM. BASCOM32 is a small loader
program which loads BASCOH into the user TPA.) BASIC will
return the prompt "*", indicating it is ready to accept
commands. To tell the BASIC compiler what to compile and
with which options, it is necessary to input a "command
string," which is read by the compiler's command scanner.
The general format of a BASIC compiler command string is:

objprog-dev:filename.ext,list-dev:filename.ext=
source-dev:filename.ext

objprog-dev:
The device on which the object program is to be written.

list-dev:
The device on which the program listing is written.

source-dev:
The device from which the source-program input to BASIC is
obtained. If a device name is omitted, it defaults to the
currently selected drive.

The available device names with CP/M are:

A:, B:,
HSR:
LST:
TTY:

filename. ext

C:, D: Disk drives
High speed reader
Line printer
Teletype or CRT

The filename and filename extension of the object program
file, the listing file, and the source file. Filename
extensions may be omitted. The default filename extensions
with CP/M are:

BASIC Compiler User's Manual Page 1-2

BAS BASIC source file
MAC MACRO-80 source file
REL Relocatable object file
PRN Listing file
COM Absolute file
FOR FORTRAN-80 source file
COB COBOL-80 source file

object file or the listing file or both may be
If neither a listing file nor an object file is

place only a comma to the left of the equal sign.
names of the object file and the listing file are
the default is the name of the source file.

Either the
omitted.
desired,
If the
omitted,

Examples:

*=TEST Compile the program TEST. BAS
and place the object in TEST.REL

*,TTY:=TEST Compile the program TEST.BAS
and list program on the terminal.
No object is generated.

*TESTOBJ=TEST.BAS Compile the program TEST. BAS
and put object in TESTOBJ.REL

*TEST,TEST=TEST Compile TEST.BAS', put object in
TEST.REL and listing in TEST.PRN

*,=TEST.BAS Compile TEST.BAS but produce

1 • 1 • 1

no object or listing file. Useful
for checking for errors.

BASIC 'Compilation' Switches

A switch on the end of a compiler command string specifies a
special parameter to be used during compilation. Switches
are always preceded by a slash (/1. More than one switch
may be used in the same command. The available switches
are:

Switch

/E

Act'ion

The /E switch tells the compiler that the program
contains the ON ERROR GOTO statement. If a RESUME
statement other than RESUME <line number> is used
with the ON ERROR GOTO statement, use /X instead
(see belowl. To handle ON ERROR GOTO properly in
a compiled environment, BASIC must generate some
extra code for the GOSUB and RETURN statements.
Therefore, do not use this switch unless your
program contains the ON ERROR GOTO statement. The

BASIC Compiler User's Manual Page 1-3

/E switch also causes line numbers to be included
in the binary file, so runtime error messages will
include the number of the line in error.

/X The /X switch tells the BASIC compiler that the
program contains one or more RESUME, RESUME NEXT,
or RESUME a statements. The /E switch is assumed
when the /X switch is specified. To handle RESUME
statements properly in a compiled environment, the
compiler must relinquish certain optimizations.
Therefore, do not use this switch unless your
program contains RESUME statements other than
RESUME <line number>. The /X switch also causes
line numbers to be included in the binary file, so
runtime error messages will include the kumber of
the line in error.

IN The IN switch prevents listing of the generated
code in symbolic notation. If this switch is not
set, the source listing produced by the compiler
will contain the object code generated by each
statement.

/D The /D switch causes debug/checking code to be
generated at runtime. This switch must be set if
you want to use TRON/TROFF. The BASIC compiler
generates somewhat larger and slower code in order
to perform the following checks:

1. Arithmetic overflow. All arithmetic
operations, integer and floating point, are
checked for overflow and underflow.

2. Array bounds. All array references are
checked to see if the subscripts are within
the bounds specified in the DIM statement.

3. Line numbers are included in the generated
binary so that runtime errors can indicate the
statement which contains the error.

4. RETURN is checked for a prior GOSUB.

/Z The /Z switch tells the compiler to use Z80
opcodes whenever possible. The generated code is
listed using 8080 opcodes except in those cases
where Z80 opcodes have been used.

/S The /S switch forces the compiler to write long
quoted strings (i.e., more than 4 characters) to
the binary file as they are encountered. This
allows large programs with many quoted strings to
compile in less memory. However, there are two
disadvantages:

BASIC Compiler User's Manual Page 1-4

1 • Memory space is wasted if identical, long
quoted strings appear in the program.

2. Code generated while the /S switch is set
cannot be placed in ROM.

/4 The /4 switch allows the compiler to use the
lexical conventions of the Microsoft 4.51 BASIC

-interpreter. That is, spaces are insignificant,
variables with embedded reserved words are
illegal, variable names are restricted to two
significant characters, etc. This feature is
useful if you wish to compile a source program
that was coded without spaces, and contains lines
such as

FORI=ATOBSTEPC

Without the /4 switch, the compiler would assign
the variable "ATOBSTEPC" to the variable FORI.
With the /4 switch, it would recognize it as a FOR
statement. It is recommended that such programs
be edited to the 5.0 lexical standards, rather
than using the /4 switch. Delimiting reserved
words with spaces causes no increase in the
generated code and greatly improves readability.

/C The /C switch tells the compiler to relax line
numbering constraints. When /C is specified, line
numbers may be in any order, or they may be
eliminated entirely. Lines are compiled normally,
but of course cannot be targets for GOTOs, GOSUBs,
etc. While /C is set, the underline character
causes the remainder of the physical line to be
ignored, and the next physical line is considered
to be a continuation of the current logical line.
NOTE: /C and /4 may not be used together.

Examples:

*,TTY:=MYPRG/N Compile MYPRG.BAS and list the
source program on the terminal but
without the generated code. Put
the object file in MYPRG.REL.

*=TEST/E Compile TEST. BAS. The source
file contains an ON ERROR GOTO
statement. Put the object file
in TEST.REL.

*=BIGGONE/D Compile BIGGONE.BAS and put
the object file in BIGGONE.REL.
Check for overflow and out-of
bound array subscripts, and include
line numbers in the object file.

CHAPTER 2

USING THE BASIC COMPILER

2 • 1 PROCEDURE

The following steps give the procedure for creating,
compiling, and saving BASIC programs using the BASIC
compiler and LINK-aD loader on the CP/M operating system.

1. Create a source file
Create a BASIC source file using the CP/M editor or
Microsoft t s EDIT-80 Text Edi tor or r1icrosoft' s
BASIC-aD interpreter. Filenames are up to eight
characters long, with 3-character extensions.
BASIC source filenames should have the extension
BAS. (MACRO-aD source filenames should have the
extension MAC.)

2. Error check
Before attempting to compile the program and
produce object code for the first time, it is
advisable to do a simple syntax check. This will
help eliminate the necessity of recompiling later
due to syntax errors or other easy-to-fix errors.
One way to check for errors is to run the program
on Microsoft's BASIC-aD interpreter.

Another way to perform the error check is to do a
compilation without generating an object or listing
file. For example, if your BASIC source file is
called MAX1.BAS, type the following:

A>BASCOM ,=MAX1/N

This command compiles the source file MAX1.BAS
without producing an object or listing file. (For
users with 32K CP/M systems, type BASCOM32 instead
of BASCOM. BASCOM32 is a small loader program which
loads BASCOM into the user TPA.)

If necessary, return to the editor (or interpreter)
and correct any errors.

3. Compile the source file
To compile the edited source file and produce an
object and listing file, type

BASIC Compiler User's Manual Page 2-2

A>BASCOM M&~1,MAX1=~~1

The compiler will create a REL (relocatable) file
called MAX1.REL and a listing file called MAX1.PRN.

4. Load, Execute and Save the Program
To load the program MAX1.REL into memory and execute
it, type

A>LaO MAX1/G

To exit LINK-80 and save a memory image of the
object code, type

A>L80 ~..x 1 /E

When LINK-80 exits, three numbers will be printed:
the starting address for execution of the program,
the end address of the program and the number of
256-byte pages used. For example

[210C 301A 48]

Use the CP/M SAVE command to save a memory image.
The number of pages used is the argument for SAVE.
For example

A>SAVE 48 MAX1.COM

NOTE

CP/M always saves memory starting at 100H
and jumps to 100H to begin execution. Do
not use /P or /D to set the origin of the
program or data area to 100H, unless
program execution will actually begin at
100H.

The CP/M version of LINK-ao is capable of creating
COM files by using the /N switch, (See LINK-80
Switches, Utility Software Manual) . In our
example,

A>Lao MAX1,MAX1/N/E

loads and links MAX1.REL, creates the file MAX1.COM
for direct execution, and exits to CP/M.

An object code file has now been saved on the disk
under the name specified with the LINK-80 /N switch
or the CP/M SAVE command (in this case MAX1). To
execute the program simply type the program name

A> MAX 1

BASIC Compiler User's Manual Page 2-3

5. CP/M Command Lines
CP/M command lines and files are supported; i.e.,
a BASIC, COBOL-SO, FORTRAN-SO, MACRO-SO or LINK-SO
command line may be placed in the same line with
the CP/M run command. For example, the command

A>BASCOM =TEST

causes CP/M to load and run the BASIC compiler,
which then compiles the program TEST.BAS and
creates the file TEST.REL. This is equivalent to
the following series of commands:

A>BASCOM
*=TEST
A>

BASIC Compiler User's Manual Page 2-4

2.2 SAMPLE COMPILATION

BASCOM Y5.0 - Copyright
0014 0007 00100

** 0014'L00100:
0014 0007 00200

** 0014'L00200:
0014 0007 00300

** 0014'L00300:
0014 0007 00400

** 0014'L00400:
0014 006D 00500

** 0014'L00500:
** 0017'
** 001A'

001D 006D 00600
** 001D'L00600:
** 0020'
** 0023'
** 0026'I00001:

0026 006F 00700
** 0026'L00700:
** 0029 '.
** 002A'
** 002B'
** 002C'
** 002F'
** 0030'
** 0031'
** 0032'
** 0033'
** 0034'
** 0037'
** 0038'
** 0039'
** 003C'
** 003D'
** 003E'
** 003F'
** 0040'
** 0043'
** 0044'
** 0045'
** 0046'
** 0047'
** 004A'
** 004B'
** 004E'
** 004F'
** 0050'
** 0053'
** 0054'
** 0055'
** 0056'
** 0057'

1979 (C) by MICROSOFT - 11776 Bytes Free
, SAMPLE BASIC COMPILATION

DEFINT I-N,S

DIM S(50)

S(O) =
LXI
SHLD
SHLD
FOR I=O
LXI
SHLD
JMP

1 : S(1) = 1
H,0001
S%
S%+0002
TO 24
H,OOOO
I%
IOOOOO

S(2*(I+1»=S(2*(I+1)-1)+S(2*(I+1)-2)+3
LHLD I%
DAD H
DAD H
PUSH H
LXI D,S%+0002
DAD D
MOV E,M
INX H
MOV D,M
XCHG
SHLD
POP
PUSH
LXI
DAD
MOV
INX
MOV
LHLD
DAD
INX
INX
INX
SHLD
POP
LXI
DAD
PUSH
LHLD
XCHG
POP
HOV
INX
MOV

T:01
H
H
D,S%
D
E,M
H
D,M
T:01
D
H
H
H
T:02
H
D,S%+0004
D
H
T:02

H
M,E
H
M,D

BASIC Compiler User's Manual

0058 006F 00800
** 0058 'LOO800:
** OOSB ,.
** OOSC'
** OOSF' IOOOOO:
** OOSF'
** 0062 '
** 0065 '
** 0066 '
** 0067 '
** 006A'
** 006B'
** 006C'IOOO02:

006F 006F 00900
** 006F'L00900:
** 0072'
** 0075'
** 0078 '
** 007B'

007E OQ6F
** OQ7E'

00000 Fatal Errors
11151 Bytes Free

NEXT
LHLD
INX
5HLD

LHLD
LXI
MOV
RAL
JC
DAD
DAD
JC
PRINT
CALL
LXI
CALL
LHLD
CALL

CALL

Page 2-5

I
I%
H
I%

I%
D,FFE7
A,H

IOOO02
D
H
IOOO01

"AN5WER ="; 5 (501
$PROA
H,<const>
$PV1D
5%+0064
$PV2C

$END

The address in the left-hand column is the current program
address. The address in the next column is the current data
address.

Note the examples of common subexpression elimination in
lines 500 and 700, and constant folding and peephole
optimization in line 700.

CHAPTER 3

ERROR MESSAGES

3. 1 BASIC COMPILER ERROR MESSAGES

The following errors may occur while a program is compiling.
The BASIC compiler outputs the two-character code for the
error, along with an arrow. The arrow indicates where in
the line the error occurred. In those cases where the
compiler has read ahead before it discovered the error, the
arrow points a few characters beyond the error, or at the
end of the line.

The error codes are as follows:

FATAL ERRORS

Code

SN

Error

Syntax Error. Caused by one of the following:
Illegal argument name
Illegal assignment target
Illegal constant format
Illegal debug request
Illegal DEFxxx character specification
Illegal expression syntax
Illegal function argument list
Illegal function name
Illegal function formal parameter
Illegal separator
Illegal format for statement number
Illegal subroutine syntax
Invalid character
Missing AS
Missing equal sign
Missing GOTO or GOSUB
Missing comma
Missing INPUT
Missing line number
Missing left parenthesis
Missing minus sign
Missing operand in expression
Missing right parenthesis

BASIC Compiler User I s ~1anual

Missing semicolon
Name too long
Expected GOTO or GOSUB
String assignment required
String expression required
String varible required here
Illegal syntax
Variable required here
Wrong number of arguments
Formal parameters must be unique
Single variable only allowed
Missing TO
Illegal FOR loop index variable
Missing THEN
Missing BASE
Illegal subroutine name

OM Out of Memory
Array too big
Data memory overflow
Too many statement numbers
Program memory overflow

SQ Sequence Error
Duplicate statement number
Statement out of sequence

TMType Mismatch
Data type conflict
Variables must be of same type

TC Too Complex
Expression too complex
Too many arguments in function call
Too many dimensions
Too many variables for LINE INPUT
Too may variables for INPUT

BS Bad Subscript
Illegal dimension value
Wrong number of subscripts

LL Line Too Lon~

ue Unrecognizable Command
Statement unrecognizable
Command not implemented

OV Math Overflow

/0 Division by Zero

DD Array Already Dimensioned

Page 3-2

BASIC Compiler User's Manual

FN FOR/NEXT Error
FOR loop index variable already in use
FOR without NEXT
NEXT without FOR

FD Function Already Defined

UF Function Not Defined

WE WHILE/WEND Error
WHILE without WEND
WEND without WHILE

/E Missing "/E" Switch

/X Missing "/X" Switch

WARNING ERRORS

ND Array Not Dimensioned

SI Statement Ignored
Statement ignored
Unimplemented command

Page 3-3

BASIC Compiler User's Manual Page 3-4

3.2 BASIC RUNTIME ERROR MESSAGES

The following errors may occur while a compiled program is
executing. The error numbers match those issued by the
BASIC-80 interpreter. The compiler runtime system prints
long error messages followed by an address, unless ID, IE,
or Ix is specified. In those cases the error message is
followed by the number of the line in which the error
occurred.

Number Message

2 Syntax error
A line is encountered that contains an incorrect
sequence of characters in a DATA statement.

3 RETURN without GOSUB
A RETURN statement is encountered for which there is
no previous, unmatched GOSUB statement

4 Out of data
A READ statement is executed when there are no DATA
statements with unread data remaining in the program.

5 Illegal function call
A parameter that is out of range is passed to a math
or string function. An FC error may also occur as the
result of:

1. a negative or unreasonably large subscript

2. a negative or zero argument with LOG

3. a negative argument to SQR

4. a negative mantissa with a non-integer exponent

5. a call to a USR function for which the starting
address has not yet been given

6. an improper argument to ASC, CHR$, MID$, LEFT$,
RIGHT$, INP, OUT, WAIT, PEEK, POKE, TAB, SPC,
STRING$, SPACE$, INSTR, or ON ••• GOTO

7. a string concatenation that is longer than 255
characters

6 Floating overflow or integer overflow
The result of a calculation is too large to be
represented in BASIC-80's number format. If underflow
occurs, the result is zero and execution continues
without an error.

BASIC Compiler User1s Manual Page 3-5

9 Subscript out of range
An array element is referenced with a subscript that
is outside the dimensions of the array.

11 Division by zero
A division by zero is encountered in an expression, or
the operation of involution results in zero being
raised to a negative power. Machine infinity with the
sign of the numerator is supplied as the result of the
division, or positive machine infinity is supplied as
the result of the involution, and execution continues.

14 Out of string space
String variables exceed the allocated amount of string
space.

20 RESUME without error
A RESUME statement is encountered before an error
trapping routine is entered.

21 Unprintable error
An error message is not available for the error
condition which exists. This is usually caused by an
ERROR with an undefined error code.

50 Field overflow
A FIELD statement is attempting to allocate more bytes
than were specified for the record length of a random
file.

51 Internal error
An internal malfunction has occurred in Disk BASIC-80.
Report to Microsoft the conditions under which the
message appeared.

52 Bad file number
A statement or command references a file with a file
number that is not OPEN or is out of the range of file
numbers specified at initialization.

53 File not found
A LOAD, KILL or OPEN statement references a file that
does not exist on the current disk.

54 Bad file mode
An attempt is made to use PUT, GET, or LOF with a
sequential file, to LOAD a random file or to execute
an OPEN with a file mode other than I, 0, or R.

BASIC Compiler User' s ~1anual Page 3-6

55 File already open
A sequential output mode OPEN is issued for a file
that is already open; or a KILL is given for a file
that is open.

57 Disk I/O error
An I/O error occurred on a disk I/O operation. It is
a fatal error, i.e., the operating system cannot
recover from the error.

58 File already exists
The filename specified in a NAME statement is
identical to a filename already in use on the disk.

61 Disk full
All disk storage space is in use.

62 Input past end
An INPUT statement is exeucted after all the data in
the file has been INPUT, or for a null (empty) file.
To avoid this error, use the EOF function to detect
the end of file.

63 Bad record number
In a PUT or GET statement, the record number is either
greater than the maximum allo~led (32767) or equal to
zero.

64 Bad file name
An illegal form is used for the filename with LOAD,
SAVE, KILL, or OPEN (e.g., a filename with too many
characters).

67 Too many files
An attempt is made to create a new file (using SAVE or
OPEN) when all 255 directory entries are full.

APPENDIX L

Microsoft BASIC Compiler

The Microsoft BASIC Compiler package contains the following
software: BASIC Compiler, MACRO-SO assembler, and LINK-SO
loader. The following manuals are also supplied: BASIC-SO
Reference Manual, BASIC Compiler User~s Manual, utility
Software Manual. The Utility Software Manual is the:
reference manual for MACRO-SO and LINK-BO. The BASIC
Compiler User~s Manual describes the use of the compiler,
its command format, compilation switches and error messages.
The BASIC language that is used with the Microsoft BASIC
Compiler is the same as described in this manual for Disk
BASIC-BO with the following exceptions:

L.l OPERATIONAL DIFFERENCES

The Compiler interacts with the console only to read
compiler commands. These specify what files are to be
compiled. There is no "direct mode," as with the BASIC-SO
interpreter. Commands that are usually issued in the direct
mode with the BASIC-SO interpreter are not implemented o~·
the Compiler.

The following statements and commands are not implemented
and will generate an error message:

AUTO
DELETE
NEW

CLEAR
EDIT
RENUM

CLOAD
LIST
SAVE

CSAVE
LLIST

COMMON
LOAD

CONT
MERGE

Because there is no direct mode for typing in programs or
edit mode for editing programs, use Microsoft~s EDIT-SO Text
Editor or BASIC-SO interpreter for creating and editing
programs. If you use the interpreter, be sure to SAVE the
file with the A (ASCII format) option.

The compiler cannot accept a physical line that is more than
127 characters in length. A logical statement, however, may
contain as may physical lines as desired. Use line feed to
start a new physical line within a logical statement.

Page L-2

To reduce the size of the compiled program, there are no
'program line numbers included in the object code generated
by the compiler unless the /D, IX, or /E switch is set in
the compiler command. Error messages, therefore, contain
the address where the error occurred, instead of a line
number. The compiler listing and the map generated by
LINK-SO are used to identify the line that has the error.
It is always a good idea to debug programs using the
BASIC-SO interpreter before attempting to compile them. See
the BASIC Compiler User~s Manual for more information.

L.2 LANGUAGE DIFFERENCES

Mo~t programs that run on the Microsoft BASIC-SO interpreter
willi run on the BASIC Compiler with little or no change.
However, it is necessary to note differences in the use of
th.~following program statements:

1. CALL
,The <variable name> field
must contain an External
recognized by LINK-SO as
routine must be supplied
language subroutine or
FORTRAN-SO library.

in the CALL statement
symbol, i.eo, one that is
a global symbol. This

by the user as an assembly
a routine from the

2. COMMON
The COMMON statement is not implemented on the
compiler. It will generate a fatal error.

The COMMON statement will be implemented in a
future release of the BASIC compiler. However, its
implementation will be different from the BASIC-SO
interpreter~s version. The COMMON statement will
be similar to FORTRAN~s COMMON statement.

3. CHAIN and RUN
The CHAIN and RUN statements have been implemented
in their simplest form only; i.e., CHAIN
filename$. For CP/M, the default extension is
• COM. BASCOM programs can chain to any COM file;
however, the command line information ~s not
automatically passed. Command line information can
be passed by POKEing the appropriate information
into the command line area.

4. DEFINT/SNG/DBL/STR
The compiler does not "execute" DEFxxx statements;
it reacts to the static occurrence of these
statements, regardless of the order in which
program lines are executed. A DEFxxx statement
takes effect as soon as its line is encountered.
Once the type has been defined for a given

Page L-3

variable, it remains in effect until the end of the
program or until a different DEFxxx statement with
that variable takes effect.

s. USRn Functions
USRn Functions are significantly different from the
interpreter versions. The argument to the USRn
function is ignored and an integer result is
returned in the HL registers. It is recommended
that USRn functions be replaced by the CALL
statement.

6. DIM and ERASE
The· DIM statement is similar to the DEFxxx
statement in that it is scanned rather than
executed. That is, DIM takes effect when its lirte'
is encountered. If the default dimension (10) has
already been established for an array variable andl
that variable is later encountered in a" ::DIM
statement, a "Redimensioned array" error results.

There is no ERASE statement in the compiler, so
arrays cannot be erased and redimensioned. An
ERASE statement will produce a fatal error.

Also note that the values of the subscripts in a
DIM statement must be integer constants; they may
not be variables, arithmetic expessions, or
floating point values. For example,

DIM AI(I)
DIM Al (3+4)

are both illegal.

7. END
During execution of a compiled program, an END
statement closes files and returns control to the
operating system. The compiler assumes an" END
statement' at the end of the program, so "running
off the end" produces proper program termination.

8. ON ERROR GOTO/RESUME <line number>
If a program contains ON ERROR GOTO and RESUME
<line number> statements, the IE compilation switch
must be used. If the RESUME NEXT, RESUME, or
RESUME a form is used, the IX switch must also be
included. See the BASIC Compiler User~s Manual for
an explanation of these switches.

9. REM
REM statements or remarks starting with a single
quotation mark do not take up time or space during
execution, and so may be used as freely as desired.

Page L-4

10. STOP
The STOP statement is identical to the END
statement. Open files are closed and control
returns to the operating system.

11. TRON/TROFF
In order to use TRON/TROFF, the /D compilation
switch must be used. Otherwise, TRON and TROFF are
ignored and a warning message is generated.

12. FOR/NEXT and WHILE/WEND

13.

FOR/NEXT and WHILE/WEND loops must be statically
nested.

Double Precision Transcendental Functions
SIN, COS, TAN, SQR, LOG, and EXP return double
precision results if given a double precision
argument. Exponentiation with double prec~s~on
operands will return a double precision result •

. % INCLUDE
'The %INCLUDE <filename>statement allows the
compiler to include source from an alternate file.
The %INCLUDE statement must be the last statement
on a line. The format of the %INCLUDE statement
is:

<line number> %INCLUDE <filename>

, For example,

999 %INCLUDE SUBIOOO.BAS

\

L.3 EXPRESSION EVALUATION

During expression evaluation, the operands of each operator
are converted to the same type, that of the most precise
op~~and. For example,

~;.)"--'-,

QR=J%+AI+Q#

causes J% to be converted to single prec~s~on and added to
AI. This result is converted to double precision and added
to Qt.

The, Compiler is more limited than the interpreter in
ha~dfrng numeric overflow. For example, when run on the
int'~rpteter the following program

," ·r

I%=20000
J%=20000
K%=-30000
M%=I%+J%-K%

Page L-S

yields 10000 for M%. That is, it adds I% to J% and, because
the number is too large, it converts the result into a
floating point number. K% is then coverted to floating
point and subtracted. The result of 10000 is found, and is
converted back to integer and saved as M%.

The compiler, however, must make type conversion decisions
during compilation. It cannot defer until the actual values
are known. Thus, the compiler would generate code "to
perform the entire operation in integer mode. If the /D
switch were set, the error would be detected. Otherwise, an
incorrect answer would be produced.

In order to produce optimum efficiency in the compiled
progr'am, the compiler may perform any number of valid
algebraic transformations before generating the code. -~or
example, the program

I%=20000
J%=-18000
K%=20000
M%=I%+J%+K%

could produce an incorrect result when run. If the compiler
actually performs the arithmetic in the order shown, no
overflow occurs. However" if the compiler performs I%+K%
first and then adds J%, an overflow will occur. The
compiler follows the rules for operator precedence and
parenthetic modification of such precedence, but no other
guarantee of evaluation order can be made.

L.4 INTEGER VARIABLES

In order to produce the fastest and most compact object ,'code>.:
possible, make maximum use of integer variables. ,For
example, this program

FOR I=l TO 10
A{ I) =0
NEXT I

can execute approximately 30 times faster by simply
substituting "I%" for "I". It is especially advantageou~;~ci
use integer variables to compute array subscripts. "''i'fie
generated code is significantly faster and more compact.

