

CP/M 3 Programmer's Guide 4,3 A Sample Random Access Program

024C 210000 1xi h,0 ; 0000
024F 11F302 1xi d,conlin;command line
0252 1A readc: 1ldax d ;next command character
0253 13 inx d ;to next command position
0254 B7 ora a ;cannot be end of command
0255 C8 rz

: not zero, numeric?
0256 D630 sui '’
0258 FEOA cpi 10 ;carry if numeric
025A D27902 jnc endrd

; add—-in next digit
025D F5 push psw
025E 79 mov a,c ;value in ahl
025F 29 dad h
0260 8F adc a ;%2
0261 F5 push a ;save value * 2
0262 ES5 push h
0263 29 dad h %4
0264 8F adc a
0265 29 dad h ;%8
0266 8F adc a
0267 C1 pop b ;*¥2 + *8 = *10
0268 09 dad b
0269 C1 pop b
026A 88 adc b
026B C1 pop b ;+digit
026C 48 mov c,b
026D 0600 mvi b,0
026F 09 dad b
0270 CEO0O aci 0
0272 4F mov c,a
0273 D25202 jnc readc
0276 C33C02 jmp readcom

endrd:

; end of read, restore value in a
0279 C630 adi ‘0! ; command
027B FE61 cpi ‘al ;translate case?
027D D8 rc

; lower case, mask lower case bits
027E E65F ani 101$1111b
0280 C9 ret ;return with value in chl

All Information Presented Here is Proprietary to Digital Research

165

CP/M 3 Programmer's Guide 4.3 A Sample Random Access Program

;***
ok *
;* string data area for console messages *
ok *
;***
badver:

0281 736F727279 db 'sorry, you need cp/m version 3$'
nospace:

02A0 6E6F206469 db 'no directory space$’
datmsg:

02B3 7479706520 db 'type data: $°

‘ errmsg:

02BF 6572726F72 db 'error, try again.s$'
prompt:

02D1 6E65787420 db 'next command? §$'
entmsg:

02EQ0 656E746572 db 'enter filename: $'
;***
.k *
1
;* fixed and variable data area *
.k *
';***

02F1 21 conbuf: - db conlen ;length of console buffer

02F2 consiz: ds 1 ;resulting size after read

02F3 conlin: ds 32 ;length 32 buffer

0021 = conlen equ $-consiz
pfncb:

0313 F302 dw conlin

0315 5C00 dw fcb
;

0317 ds 32 ;16 level stack
stack:

0337 end

You could make the following major improvements to this program
to enhance its operation. With some work, this program could evolve
into a simple data base management system. You could, for example,
assume a standard record size of 128 bytes, consisting of arbitrary
fields within the record. You could develop a program called GETKEY
that first reads a sequential file and extracts a specific field
defined by the operator. For example, the command

GETKEY NAMES.DAT LASTNAME 10 20

would cause GETKEY to read the data base file NAMES.DAT and extract
the "LASTNAME" field from each record, starting at position 10 and
ending at character 20. GETKEY builds a table in memory consisting
of each particular LASTNAME field, along with its 1l6-bit record
number location within the file. The GETKEY program then sorts this
list and writes a new file, called LASTNAME.KEY. This list,

All Information Presented Here is Proprietary to Digital Research

166

CP/M 3 Programmer's Guide 4,3 A Sample Random Access Program

sometimes called an inverted index, is an alphabetical list of
LASTNAME fields with their corresponding record numbers.

You could rename the program shown above to QUERY, and modify
it so that it reads.a sorted key file into memory. The command line
might appear as

QUERY NAMES .DAT LASTNAME.KEY

Instead of reading a number, the QUERY program reads an alphanumeric
string which is a particular key to find in the NAMES.DAT data base.
Because the LASTNAME.KEY list is sorted, you can find a particular
entry quickly by performing a binary search, similar to looking up a
name in the telephone directory. Start at both ends of the list and
examine the entry halfway in between and, if not matched, split
either the upper half or the lower half for the next search. You
will quickly reach the item you are looking for, in log2(n) steps,
where you will find the corresponding record number. Fetch and
display this record at the console as the program illustrates.

At this point, you are just getting started. With a little
more work, you can allow a fixed grouping size, which differs from
the 128-byte record shown above. You can accomplish this by keeping
track of the record number as well as the byte offset within the
record. Knowing the group size, you can randomly access the record
containing the proper group, offset to the beginning of the group
within the record, and read sequentially until the group size has
been exhausted.

Finally, you can improve QUERY considerably by allowing Boolean
expressions that compute the set of records that satisfy several
relationships, such as a LASTNAME between HARDY and LAUREL and an
AGE 1less than 45. Display all the records that fit this
description. Finally, if your lists are getting too big to fit into
memory, randomly access your key files from the disk as well.

4.4 Construction of an RSX Program

This section describes the standard prefix of a Resident System
Extension (RSX) and illustrates the construction of an RSX with an
example. (See Section 1.6.4 for a discussion of how RSXs operate
under CP/M 3.) RSX programs are usually written in assembler, but
you can use other languages if the interface between the language
and the calling conventions of the BDOS are set up properly.

4.4.1 The RSX Prefix
The first 27 bytes of an RSX program contain a standard data

structure called the RSX prefix. The RSX prefix has the following
format:

All Information Presented Here is Proprietary to Digital Research

167

CP/M 3 Programmer's Guide 4,4 Construction of an RSX program

serial:

db 0,0,0,0,0,0
start:

jmp ftest ; start of program
next:

db O0c3h ; jump instruction to

dw 0 ; next module in line
prev:

dw 0 ; previous module
remove:

db 0ffh ; remove flag
nonbank:

db 0 ; nonbank flag
name:

db '12345678" ; any 8-character name
loader: .

db 0 ; loader flag

db 0,0 ; reserved area

The only fields of the RSX prefix that you must initialize are
the remove: flag, the nonbank: flag, and the name: of the RSX.

For compatibility with previous releases of CP/M, the serial:
field of the prefix is set to the serial number of the operating
system by the LOADER module when the RSX is loaded into memory.
Thus, the address in location 6 locates the byte following the
serial number of the operating system with or without RSXs in
memory.

' The start: field contains a jump instruction to the beginning
of the RSX code where the RSX tests to see if this BDOS function
call is to be intercepted or passed on to the next module in line.

The next: field contains a jump instruction to the next module
in the chain- or the LOADER module if the RSX is the oldest one in
memory. The RSX program must make its own BDOS function calls by
calling the next: entry point.

The prev: field contains the address of the preceding RSX in
memory or location 5 if the RSX is the first RSX in the chain.

The remove: field controls whether the RSX is removed from
memory by the next call to the LOADER module via BDOS function 59.
If the remove: flag is OFFH, the LOADER removes the RSX from memory.
Note that the CCP always calls the LOADER module during a warm start
operation. An RSX that remains in memory past warm start because
its remove: flag is zero, must set the flag at its termination to
ensure-its removal from memory at the following warm start.

The nonbank: field controls when the RSX is loaded. If the
field is OFFH, the LOADER only loads the module into memory on

nonbanked CP/M 3 systems. Otherwise, the RSX is loaded into memory
under both banked and nonbanked versions of CP/M 3.

All Information Presented Here is Proprietary to Digital Research

168

CP/M 3 Programmer's Guide 4.4 Construction of an RSX program

The loader: flag identifies the LOADER RSX. When the LOADER
module loads an RSX into memory, it sets this prefix flag of the
loaded RSX to zero. However, the loader: flag in the LOADER'S
prefix contains OFFH. Thus, this flag identifies the last RSX in
the chain, which is always the LOADER.

4.4.2 Example of RSX Use

These two sample programs illustrate the use of an RSX program.
The first program, CALLVERS, prints a message to the console and
then makes a BDOS function 12 call to obtain the CP/M 3 version
number . CALLVERS repeats this sequence five times before
terminating. The second program, ECHOVERS, is an RSX that
intercepts the BDOS function 12 call made by CALLVERS, prints a
second message, and returns the version 0031H to CALLVERS. Although
this example is simple, it illustrates BDOS function interception,
stack swapping, and BDOS function calls within an RSX.

All Information Presented Here is Proprietary to Digital Research

169

CP/M 3 Programmer's Guide

0005
0009
o0oocC
000D
000A

0100
0100
0102
0103
0105
0108
010B
010D

0110
011l
0114
0115
0116
0119
011iB

011E
0134
0135

0009
000D
000A

0000
0006
0009
000A
000C
000E
000F
0010
0018

001B
00l1C
00lE
0021

O0DOA2A2A2A

00

0000000000
C31B0O

Cc3

0000

0000

FF

00
4543484F56
000000

79
FEOC
CA2400
C30900

4.4 Construction

; CALLVERS program

bdos
prtstr equ
vers equ
cr equ
1f equ

equ

org
mvi
loop:
mvi
1xi

call

mvi

call

mov
sta
pop
dcr
jnz
mvi
jmp
call$msg:
db
curvers db
end

; ECHOVERS RSX

pstring equ

cr equ
1£ equ
i
H
i
db
jmp
next: db
dw

prev: dw
remov: db
nonbnk: db

ftest:

begin:

push

5

9
12
0dh
O0ah

100h

d,5

d

c,prtstr
d,call$msg
bdos
c,vers
bdos

a,l
curvers
d

d

loop
c,0
bdos

of an RSX program

~e o Ne we e

~ wo

~e e

~

entry point for BDOS
print string function
get version function
carriage return

line feed

Perform 5 times
save counter

print call message

try to get version #
CALLVERS will intercept

decrement counter

cr,1lf,'***x* CALLVERS ***% g!

0

9
0dh
Oah

.
r

string print function

RSX PREFIX STRUCTURE

0,0,0,0,0,0
ftest

0c3H

0

0

0ffh

0
'ECHOVERS'
0,0,0

a,c
12
begin
next

~e we Ne we Se e

~e =~

room for serial number
begin of program

jump

next module in line
previous module

remove flag set

is this function 12?

yes - intercept
some other function

All Information Presented Here is Proprietary to Digital Research

170

CP/M 3 Programmer's Guide

0024
0027
0028
002B

002E
0030
0033

0036
0039
003A
003D
003E

0054
0056

0076

210000 1xi
39 dad
225400 shld
317600 1xi
0EO9 mvi
113E00 1xi
CD0900 call
2A5400 1lhld
F9 sphl
213100 1xi
c9 ret
test$msg:
0DOA2A2A2A d
ret$stack:
0000 dw
ds
locS$stack:
end

4.4 Construction

h,0

sp

ret$stack
sp,locsstack

c,pstring
d, test$msg
next

ret$stack

h,0031h

of an RSX program

save stack

~e

print message
call BDOS

~ ~e

restore user stack

~e

; return version number

cr,lf,'**** ECHOVERS ##*%* g!

0
32

; 16 level stack

You can prepare the above programs for execution as follows:

1) Assemble the CALLVERS program using MAC as follows:

MAC CALLVERS

2) Generate a COM file for CALLVERS with HEXCOM.

HEXCOM CALLVERS

3) Assemble the RSX program ECHOVERS using RMAC:

RMAC ECHOVERS

4) Generate a PRL file using the LINK command:

LINK ECHOVERS [OP]

5) Rename the PRL file to an RSX file:

RENAME ECHOVERS .RSX=ECHOVERS.PRL

6) Generate a COM file with an attached RSX using the GENCOM

command :

GENCOM CALLVERS ECHOVERS

7) Run the CALLVERS.COM module:

CALLVERS

All Information Presented Here is Proprietary to Digital Research

171

CP/M 3 Programmer's Guide 4.4 Construction of an RSX program

The message

k%% CALLVERS *#%%x%
followed by the message
*kk%k ECHOVERS * kkk

appears on the screen five times if the RSX program works.

End of Section 4

All Information Presented Here is Proprietary to Digital Research

172

System Control Block
Appendix A

The System Control Block (SCB) is a CP/M 3 data structure
located in the BDOS. CP/M 3 uses this region primarily for
communication between the BDOS and the BIOS. However, it is also
available for communication between application programs, RSXs, and
the BDOS. Note that programs that access the System Control Block
are not version independent. They can run only on CP/M 3.

The following list describes the fields of the SCB that are
available for access by application programs and RSXs. The location
of each field is described as the offset from the start address of
the SCB (see BDOS Function 49). The RW/RO column indicates if the
SCB field is Read-Write or Read-Only.

Table A-1. SCB Fields and Definitions

Offset RW/RO Definition

00 - 04 RO Reserved for system use.

05 RO BDOS Version Number.

06 - 09 RW Reserved for user use. Use these
four bytes for your own flags or
data.

0A - OF RO Reserved for system use.

10 - 11 RW Program Error Return Code. This 2-

byte field can. be used by a program
to pass an error code or value to a
chained program. CP/M 3's
conditional command facility also
uses this field to determine if a
program executes successfully. The
BDOS Function 108 (Get/Set Program
Return Code) is used to get/set this
value.

12 - 19 RO Reserved for system use

All Information Presented Here is Proprietary to Digital Research

173

CP/M 3 Programmer's Guide A System Control Block

Table A-1l. (continued)

Offset RW/RO Definition

1A RW Console Width. This byte contains
the number of columns, characters
per line, on your console relative
to zero. Most systems default this
value to 79. You can set this
default value by using the GENCPM or
the DEVICE utility. The console
width value is used by the banked
version of CP/M 3 in BDOS function
10, CP/M 3's console editing input
function. Note that typing a
character into the last position of
the screen, as specified by the
Console Width field, must not cause
the terminal to advance to the next

line.

1B RO Console Column Position. This byte
contains the current console column
position.

1C RW Console Page Length. This byte

contains the page length, lines per
page, of your console. Most systems
default this value to 24 lines per
page. This default value may be
changed by using the GENCPM or the
DEVICE utility (see the CP/M Plus
(CP/M Version 3) Operating System
User's Guide).

ip - 21 RO Reserved for system use.

22 - 2B RW Redirection flags for each of the
five logical character devices. If
your system's BIOS supports
assignment of logical devices to
physical devices, you can direct
each of the five logical character
devices to any combination of up to
12 physical devices, The 16-bit
word for each device represents the
following:

Each bit represents a physical
device where bit 15 corresponds to
device zero and bit 4 corresponds to
device 11l. Bits zero through 3 are
reserved for system use.

All Information Presented Here is Proprietary to Digital Research

174

CP/M 3 Programmer's Guide A System Control Block

Table A-1. (continued)

Offset RW/RO Definition

You can redirect the input and
output logical devices with the
DEVICE command (see CP/M Plus (CP/M
Version 3) Operating System User's

Guide).
22 - 23 RW CONIN Redirection Flag.
24 - 25 RW CONOUT Redirection Flag.
26 - 27 RW AUXIN Redirection Flag.
28 - 29 RW AUXOUT Redirection Flag.
2A - 2B RW LSTOUT Redirection Flag.
2C RW Page Mode. If this byte is set to

zero, some CP/M 3 utilities and CCP
built-in commands display one page
of data at a time; you display the
next page by pressing any key. If
this byte is not set to zero, the
system displays data on the screen
without stopping. To stop and start
the display, you can press CTRL-S
and CTRL-Q, respectively.

2D RO Reserved for system use.

2E RW Determines if CTRL-H is interpreted
as a rub/del character. If this
byte is set to 0, then CTRL-H is a
backspace character (moves back and
deletes). If this byte is set to
OFFH, then CTRL-H is a rub/del
character, echoes the deleted
character.

2F RW Determines if rub/del is interpreted
as CTRL-H character. If this byte
is set to 0, then rub/del echoes the
deleted character. 1If this byte is
set to OFF, then rub/del is
interpreted as a CTRL-H character
(moves back and deletes).

30 - 32 RO Reserved for system use.

All Information Presented Here is Proprietary to Digital Research

175

CP/M 3 Programmer's Guide A System Control Block

Table A-1l. (continued)

Offset RW/RO Definition

33 - 34 RW Console Mode. This is a 1l6-bit
system parameter that determines the
action of certain BDOS Console I/0
functions. (See Section 2.2.1 and
BDOS Function 109, Get/Set Console
Mode, for a thorough explanation of
Console Mode.)

35 - 36 RO Reserved for system use.

37 RW Output delimiter character. The
default output delimiter character
is $, but you can change this value
by using the BDOS Function 110,
Get/Set Output Delimiter.

38 RW List Output Flag. If this byte is
set to 0, console output is not
echoed to the list device. If this
byte is set to 1 console output is
echoed to the list device.

39 - 3B RO Reserved for system use.

3C - 3D RO Current DMA Address. This address
can be set by BDOS function 26 (Set
DMA Address). The CCP initializes
this value to 0080H. BDOS function
13, Reset Disk System, also sets the
DMA address to 0080H.

3E RO Current Disk. This byte contains the
currently selected default disk
number. This value ranges from 0 -
15 corresponding to drives A - P,
respectively. BDOS function 25,
Return Current Disk, can be used to
determine the current disk value.

3F - 43 RO Reserved for system use.

44 RO Current User Number. This byte
contains the current user number.
This value ranges from 0 - 15. BDOS
function 32, Set/Get User Code, can
change or interrogate the currently
active user number. ’

45 - 49 RO Reserved for system use.

All Information Presented Here is Proprietary to Digital Research

176

CP/M 3 Programmer's Guide A System Control Block

Table A-1l. (continued)

Offset RW/RO Definition

4A RW BDOS Multi-Sector Count. This field
is set by BDOS function 44, Set
Multi-sector Count.

4B RW BDOS Error Mode. This field is set
by BDOS function 45, Set BDOS Error
Mode.

If this byte is set to O0FFH, the
system returns to the current
program without displaying any error
messages. If it is set to OFEH, the
system displays error messages
before returning to the current
program, Otherwise, the system
terminates the program and displays
error messages. See description of
BDOS function 45, Set BDOS Error
Mode, for discussion of the
different error modes.

4C - 4F RW Drive Search Chain. The first byte
contains the drive number of the
first drive in the chain, the second
byte contains the drive number of
the second drive in the chain, and
so on, for up to four bytes. If
less than four drives are to be
searched, the next byte is set to
OFFH to signal the end of the search
chain. The drive values range from

0 - 16, where 0 corresponds to the
default drive, while 1 - 16
corresponds to drives A - P,

respectively. The drive search
chain can be displayed or set by
using the SETDEF utility (see CP/M
Plus (Version 3) Operating System

User's Guide).

50 RW Temporary File Drive. This byte
contains the drive number of the
temporary. file drive. The drive
number ranges from 0 - 16, where 0
corresponds to the default drive,
while 1 -~ 16 corresponds to drives A
- P, respectively.

All Information Presented Here is Proprietary to Digital Research

177

CP/M 3 Programmer's Guide A System Control Block

Table A-1. (continued)

Offset RW/RO Definition

51 RO Error drive. This byte contains the
drive number of the selected drive
when the last physical or extended
error occurred..

52 - 56 RO Reserved for system use.

57 RO BDOS Flags. Bit 7 applies to banked
systems only. If bit 7 is set, then
the system displays expanded error
messages. The second error line
displays the function number and FCB
information. (See Section 2.3.13).

Bit 6 applies only to nonbanked
systems. If bit 6 is set, it
indicates that GENCPM has specified
single allocation vectors for the
system. Otherwise, double
allocation vectors have been defined
for the system. Function 98, Free
Blocks, returns temporarily
allocated blocks to free space only
if bit 6 is reset.

58 - 59 RW ggte in days in binary since 1 Jan

5A RW Hour in BCD (2-digit Binary Coded
Decimal).

5B RW Minutes in BCD.

5C RW Seconds in BCD.

5D - S5E RO Common Memory Base Address. This

value is zero for nonbanked systems
and nonzero for banked systems.

SF - 63 RO Reserved for system use.

End of Appendix A

All Information Presented Here is Proprietary to Digital Research

178

Appendix B
PRL File Generation

B.1l PRL Format
A Page Relocatable Program has an origin offset of 100H bytes

that is stored on disk as a file of type PRL. The format is shown
in Table B-1.

Table B-1l. PRL File Format

Address Contents

0001-0002H Program size

0004-0005H Minimum buffer requirements (additional
memory)

0006-00FFH Currently wunused, reserved for future
allocation

0100H + Program size = Start of bit map

The bit map is a string of bits identifying those bytes in the
source code that require relocation. There is one byte in the bit
map for every 8 bytes of source code. The most significant bit, bit
7, of the first byte of the bit map indicates whether or not the
first byte of the source code requires relocation. If the bit is
on, it indicates that relocation is required. The next bit, bit 6,
of the first byte corresponds to the second byte of the source code,
and so forth.

B.2 Generating a PRL

The preferred technique for generating a PRL file is to use the
CP/M LINK-80™ , which can generate a PRL file from a REL
relocatable object file. This technique is described in the
Programmer's Utilities Guide for The CP/M Family of Operating
Systems. A sample link command is- shown.

A>link dump[op]

End of Appendix B

All Information Presented Here is Proprietary to Digital Research

179

CP/M 3 Programmer's Guide End of Appendix B

All Information Presented Here is Proprietary to Digital Research

180

Appendix C
SPR Generation

System Page Relocatable, SPR, files are similar in format to
PRL files except that SPR files have an origin offset of 0000H (see
Appendix B). SPR Files are provided as part of the standard Cp/M 3
System: the resident and banked portions of the banked BDOS, named
RESBDOS3.SPR and BNKBDOS3.SPR, and the nonbanked BDOS, named
BDOS3.SPR. The customized BIOS must also be generated in SPR format
before GENCPM can create a CP/M 3 system. The BIOS SPR file is
named BNKBIOS3.SPR for banked systems and BIOS3.SPR for nonbanked
systems. A detailed discussion of the generation of BIOS3.SPR or
BNKBIOS3.SPR is provided in the CP/M Plus (CP/M Version 3) Operating
System System Guide.

The method of generating an SPR is analogous to that of
generating a Page Relocatable Program (described in Appendix B) with
the following exceptions:

e If LINK-80 is used, the output file of type SPR is specified
with the [os] or [b] option. The [b] option is used when
linking BNKBIOS3.SPR.

® The code in the SPR is ORGed at 000H rather than 100H.

End of Appendix C

All Information Presented Here is Proprietary to Digital Research

181

CP/M 3 Programmer's Guide End of Appendix C

All Information Presented Here is Proprietary to Digital Research

182

This appendix contains tables of the ASCII symbols, including

Appendix D

ASCIl and Hexadecimal Conversions

their binary, decimal, and hexadecimal conversions.

Table D-1. ASCII Symbols
Symbol Meaning Symbol Meaning
ACK acknowledge FS file separator
BEL bell GS group separator
BS backspace HT horizontal tabulation
CAN cancel LF line feed
CR carriage return NAK negative acknowledge
DC device control NUL null
DEL delete | RS record separator
DLE data link escape SI shift in
EM end of medium SO shift out
ENQ enquiry SOH start of heading
EOT end of transmission SP space
ESC escape STX start of text
ETB end of transmission SUB substitute
ETX end of text SYN synchronous idle
FF form feed us unit separator
vT vertical tabulation

All Information Presented Here is Proprietary to Digital Research

183

CP/M 3 Programmer's Guide D ASCII and HEX Conversions

Table D-2. ASCII Conversion Table

Binary - ‘Decimal Hexadecimal ASCII
0000000 000 00 NUL

0000001 001 01 SOH (CTRL-A)
0000010 002 02 STX (CTRL-B)
0000011 003 03 ETX (CTRL-C)
0000100 004 04 EOT (CTRL-D)
0000101 005 05 ENQ (CTRL-E)
0000110 006 06 ACK (CTRL-F)
0000111 007 : 07 BEL (CTRL-G)
0001000 008 08 BS (CTRL-H)
0001001 009 09 HT (CTRL-I)
0001010 010 0A LF (CTRL-J)
0001011 011 0B VT (CTRL-K)
0001100 012 ocC FF (CTRL-L)
0001101 013 oD CR (CTRL-M)
0001110 014 OE SO (CTRL-N)
0001111 - 015 OF SI - (CTRL-0)
0010000 . 016 10 DLE (CTRL-P)
0010001 017 11 . DC1 (CTRL-Q)
0010010 018 12 DC2 (CTRL-R)
/0010011 019 13 DC3 (CTRL-S)
0010100 020 14 ~ DC4 (CTRL-T)
0010101 021 15 NAK (CTRL-U)
0010110 022 16 SYN (CTRL~-V)
0010111 023 17 ETB (CTRL-W)
0011000 . 024 18 CAN (CTRL-X)
0011001 025 19 EM (CTRL-Y)
0011010 026 1A SUB (CTRL-2Z)
0011011 027 1B ESC (CTRL-[)
0011100 028 1C FS (CTRL-\)
0011101 029 iD GS (CTRL-])
001l1ll1io 030 1E RS (CTRL-")
0011111 031 _1F US (CTRL—_)
0100000 032 20 (SPACE)
0100001 033 21 !

0100010 034 22 "

0100011 035 23 #

0100100 036 24 $

0100101 037 25 %

0100110 038 26 &

0100111 039 27 !

0101000 040 28 (

0101001 041 29)

0101010 042 2A *

0101011 043 2B +

0101100 044 2C '

0101101 045 2D -

0101110 046 2E .

0101111 047 2F /

0110000 048 30 0

0110001 049 31 1

0110010 050 32 2

All Information Presented Here is Proprietary to Digital Research

184

CP/M 3 Programmer's Guide D ASCII and HEX Conversions

Table D-2. (continued)

Binary Decimal Hexadecimal ASCII
0110011 051 33 3
0110100 052 34 4
0110101 053 35 5
0110110 054 36 6
0110111 055 37 7
0111000 056 38 8
0111001 057 39 9
0111010 058 3A :
0111011 059 3B H
0111100 060 3C <
0111101 061 3D =
0111110 062 3E >
0111111 063 3F ?
1000000 064 40 @
1000001 065 41 A
1000010 066 42 B
1000011 067 43 Cc
1000100 068 44 D
1000101 069 45 E
1000110 070 46 F
1000111 071 47 G
1001000 072 48 H
1001001 073 49 I
1001010 074 4A J
1001011 075 4B K
1001100 076 : 4C L
1001101 077 4D M
1001110 078 4E N
1001111 079 4F 0]
1010000 - 080 50 P
1010001 081 51 Q
1010010 082 52 R
1010011 083 53 S
1010100 084 54 T
1010101 085 55 §)
1010110 086 56 v
1010111 087 57 W
1011000 . 088 58 X
1011001 089 59 Y
1011010 090 5A Z
1011011 091 5B {
1011100 092 5C \
1011101 093 5D]
1011110 094 5E ~
1011111 095 5F <
1100000 0396 60 '
1100001 097 61 a
1100010 098 62 b
1100011 099 63 c
1100100 100 64 d

All Information Presented Here is Proprietary to Digital Research

185

CP/M 3 Programmer's Guide D ASCII and HEX Conversions

Table D-2. (continued)

Binary Decimal Hexadecimal ASCII
1100101 101 65 e
1100110 102 66 f
1100111 103 67 g
1101000 104 68 h
1101001 105 69 i
1101010 106 6A j
1101011 107 6B k
1101100 108 6C 1
1101101 109 6D m
1101110 110 6E n
1101111 111 6F o)
1110000 112 70 P
1110001 113 71 q
1110010 114 72 r
1110011 115 73 S
1110100 116 . 74 t
1110101 117 75 u
1110110 118 76 v
1110111 119 77 w
1111000 120 78 X
1111001 121 79 y
1111010 122 7A z
1111011 123 7B

1111100 124 7C

1111101 125 7D

1111110 126 7E -
1111111 127 7F DEL

End of Appendix D

All Information Presented Here is Proprietary to Digital Research

186

Appendix E

BDOS Function Summary

Table E-1.

BDOS Function Summary

FUNC FUNCTION NAME INPUT PARAMETERS | RETURNED VALUES
0 System Reset none none
1 Console Input none A = char
2 Console Output E = char A = 00H
3 Auxiliary Input none A = char
4 Auxiliary Output E = char A = 00H
5 List Output E = char A = 00H
6 Direct Console I/0 E = OFFH/ A = char/status/
OFEH/ none
0FDH/
char
7 Auxiliary Input none A = 00/0FFH
Status
8 Auxiliary Output none A = 00/0FFH
Status
9 Print String DE = .String A - 00H
10 Read Console Buffer DE = .Buffer/ Characters in buffer
0FFFFH
11 Get Console Status none A = 00/01
12 Return Version Number none HL= Version (0031H)
13 Reset Disk System none A = 00H
14 Select Disk E = Disk Number A = Err Flag
15 Open File DE = ,FCB A = Dir Code
16 Close File DE = ,FCB A = Dir Code
17 Search for First DE = .FCB A = Dir Code
18 Search for Next none A = Dir Code
19 Delete File DE = ,FCB A = Dir Code
20 Read Sequential DE = .FCB A = Err Code
21 Write Sequentia .DE = .FCB A = Err Code
22 Make File : DE = .FCB A = Dir Code
23 Rename File DE = .FCB A = Dir Code
24 Return Login Vector none HL= Login Vector
25 Return Current Disk none A = Cur Disk#
26 Set DMA Address DE = .DMA A = 00H
27 Get Addr (Alloc) none HL= .Alloc
28 Write Protect Disk none A = 00H
29 Get R/O Vector none HL= R/O Vector
30 Set File Attributes DE = .FCB A = Dir Code
31 Get Addr (DPB) none HL= .DPB
32 Set/Get User Code E = 0FFH/ A = Curr User/
user number 00H
33 Read Random DE = .FCB A = Err Code
34 Write Random DE = .FCB A = Err Code
35 Compute File Size DE = .FCB r0, ri, r2
A = Err Flag
Note: . indicates the address of

All Information Presented Here is Proprietary to

187

Digital Research

CP/M 3 Programmer's Guide

Table E-1l.

E BDOS Function Summary

(continued)

FUNC FUNCTION NAME

INPUT PARAMETERS

RETURNED VALUES

36 Set Random Record DE = .FCB r0, rl, r2

37 Reset Drive DE = Drive Vector A = 00H

40 Write Random with DE = .FCB A = Err Code
Zero Fill

41 Test and Write Record DE = .FCB A = QOFFH

42 Lock Record DE = .FCB A = 00H

43 Unlock Record DE = .FCB A = 00H

44 Set Multi-sector Cnt E = # Sectors A = Return Code

45 Set BDOS Error Mode E = BDOS Err Mode A = 00H

46 Get Disk Free Space E = Drive number Number of Free Sectors

A = Err Flag

47 Chain to Program E = Chain Flag A = 00H

48 Flush Buffers E = Purge Flag A = Err Flag

49 Get/Set System DE .SCB PB A = Returned Byte
Control Block HL = Returned Word

50 Direct Bios Calls DE = .BIOS PB BIOS Return

59 Load Overlay DE = .FCB A = Err Code

60 Call Resident System DE = .RSX PB A = Err Code
Extension

98 Free Blocks none A = 00H

99 Truncate File DE = .FCB A = Dir Code

100 Set Directory Label DE = .FCB A = Dir Code

101 Return Directory E = Drive A = Dir label data byte
Label Data

102 Read File Date Stamps DE = .FCB A = Dir Code
and Password Mode

103 Write File XFCB DE = .FCB A = Dir Code

104 Set Date and Time DE = ,DAT A = 00H

105 Get Date and Time DE = ,DAT Date and Time

A = seconds
106 Set Default Password DE =.Password A - 00H
107 Return Serial Number DE = .Serial # Serial Number
field

108 Get/Set Program DE = QOFFFFH/Code HL = Program Ret Code/
Return Code . none

109 Get/Set Console Mode DE = OFFFFH/Mode HL = Console Mode/none

110 Get/Set Output DE = OFFFFH/ A = Output Delimiter/
Delimiter E = Delimiter none

111 Print Block DE = .CCB A = 00H

112 List Block DE = .CCB A = 00H

152 Parse Filename DE = .PFCB See definition

Note: . indicates the address of

End of Appendix E

All Information Presented Here is Proprietary to Digital Research

188

Index

A

absolute module, 124
Access date and time
stamp, 78
Access Drive
MP/M, 110
access stamp types, 46
address
maximum, 4
allocation vector,
allocation
file space, 12
ambiguous file reference,
12, 39, 80
Archive Attribute, 40
ASM , 36
assign password, 41, 42
associated command files, 16
asterisk, 12, 35
attach RSX, 8
Attributes
bits, 40
Set File, 45
automatic submit option,
17, 18
Auxiliary Input,
Output, 63

95, 126

32, 62

B

backspace, 60
BAK, 36
Bank 0, 2
Bank 1, 3
bank switching, 3
bank-switched memory, 1, 2
BAS, 36
base extent, 102, 104
basic console I/0, 29
Basic Disk Operating
System BDOS, 5
Basic Input/Output
System BDOS, 5
basic record size, 32
BDOS, 5, 6, 7, 10, 13
BDOS Call Resident
System Extension, 21
Calling Conventions, 27
Chain to Program, 20

189

Directory Codes, 53
entry point, 13, 55
Error Codes, 52
Error Flag, 54
Error Mode, 50
extended error codes, 54
file system, 32, 36
function entry
parameters, 7
functional, 30
functions, 21
physical error codes, 54
Program Chain, 42
Read Console Buffer, 14
set directory label, 22
Set User, 41
size, 10
System Reset, 27
warm start entry point,
13, 19, 55
BDOS_base, 7, 8, 10, 13
BIOS, 5, 6, 10, 13, 51
Cold Boot entry point, 13
Cold Start function
DEVTBL, 28
entry points, 20
Parameter Block, 123
BDOS function, 7, 20, 49
BDOS Function calls:
ACCESS DRIVE, 110
AUXILIARY INPUT, 62
AUXILIARY INPUT STATUS, 66
AUXILIARY OUTPUT, 63, 67
CALL RESIDENT SYSTEM
EXTENSION, 125
CHAIN TO PROGRAM,
CLOSE FILE, 79
COMPUTE. FILE SIZE, 106
CONSOLE INPUT, 60
CONSOLE OUTPUT, 61
DELETE FILE, 83
DIRECT BIOS CALLS, 123
DIRECT CONSOLE I/O, 65
FLUSH BUFFERS, 120
FREE BLOCKS, 126
FREE ‘DRIVE, 111
GET ADDR (ALLOC)., 95
GET ADDR (DPB PARMS),
GET/SET CONSOLE MODE,
GET CONSOLE STATUS, 73
GET DATE AND TIME, 135
GET DISK FREE SPACE, 118

119

100
139

GET READ-ONLY VECTOR, 97
GET/SET PROGRAM RETURN
CODE, 138
GET/SET OUTPUT DELIMITER, 141
GET / SET SYSTEM CONTROL
BLOCK, 121
LIST BLOCK, 143"
LOCK RECORD, 114
LIST OUTPUT, 64
LOAD OVERLAY, 124
MAKE FILE, 89
OPEN FILE, 77
PARSE FILENAME, 144
PRINT BLOCK, 142
READ CONSOLE BUFFER, 68
READ FILE DATE STAMPS
AND PASSWORD MODE, 132
READ RANDOM, 102
READ SEQUENTIAL, 85
RENAME FILE, 91
RESET DISK SYSTEM, 75
RESET DRIVE, 109
RETURN CURRENT DISK, 93
RETURN DIRECTORY LABEL
DATA, 131
RETURN LOGIN VECTOR, 92
RETURN SERIAL NUMBER, 137
RETURN VERSION NUMBER, 74
SEARCH FOR FIRST, 80
SEARCH FOR NEXT, 82
SELECT DISK, 76
SET BDOS ERROR MODE, 117
SET DATE AND TIME, 134
SET DEFAULT PASSWORD, 136
SET DIRECTORY LABEL, 129
SET DMA ADDRESS, 94
SET FILE ATTRIBUTES, 98
SET/GET USER CODE, 101
SET MULTI-SECTOR COUNT, ll6
SET RANDOM RECORD, 108
SYSTEM RESET, 59
TEST AND WRITE RECORD, 113
TRUNCATE FILE, 127
UNLOCK RECORD, 115
WRITE FILE XFCB, 133
WRITE PROTECT DISK, 96
WRITE RANDOM, 104
WRITE RANDOM WITH
ZERO FILL, 112
WRITE SEQUENTIAL, 87

BIOS-resident, 100
bit map, 179

bit vector, 97
block size, 36

190

blocking
record, 116
buffers, 2 .
built-in commands, 15,
16, 17
Byte counts, 49

Cc

Call BIOS, 20
call RSX, 125
carriage return, 37, 60
CCB format, 142
cce, 5, 6, 7, 10, 13,
14, 15, 24, 42

chain flag, 119
Chain to Program, 20, 119
change default drive, 15
Character Control Block

CCB, 142, 143
character echo, 29
check-sum vector, 49
Close File, 41, 79
Cold Boot Loader, 13
cold start, 10, 12, 14
coM, 36
COM filetype, 17
command drive field, 57
command keyword, 15
command line, 15, 57, 58
Command Line Interpreter, 116
command tail, 15
common memory, 2
common memory base address, 122
common region size, 4
compatibility, 20, 24
Compute File Size, 49, 106
conditional command, 20
CONIN, 6, 29
CONIN:, 60, 65
CONOUT, 29
CONOUT:, 61, 142
console characteristics, 24
console column position, 122
Console Command Processor, 12
console input, 23, 29, 60, 65

mode, 122
Console mode default state, 60
Console output, 29, 61, 65
console page length, 122
Console status, 29, 65
console width, 122

string output, 29
context, 2
control character =, 30

copy file, 11, 149

cP/M, 1, 2

CcCpP/M 2, 27

CP/M version 2, 24

CPM3.SYS file, 13

CPMLDR, 13, 14

CPMLDR_BDOS, 13

CPMLDR_BIOS, 13

create directory entry, 89

create directory label, 129

create stamp types, 46

create XFCB, 89

Creation date and time
stamp, 90

CTRL-A, 71

CTRL~-B, 71

CTRL-C, 70

CTRL-E, 70

CTRL-F, 71

CTRL-G, 29, 68, 71

CTRL-H, 70

CTRL-I, 60

CTRL-J, 70

CTRL-K, 71

CTRL-M, 68, 70, 71

return, 70

CTRL-P, 70

CTRL-Q, 29, 30, 31, 60

CTRL-R, 70

CTRL-S, 29, 30, 31, 60

CTRL-U, 70

CTRL-W, 72

CTRL-X, 70

CTRL-2, 29, 37

current record, 39, 56

current user number, 24

D

Data, 36
area, 11, 36
block size, 36
space, 12
tracks, 11
data byte
directory label, 129, 131
date, 24, 122, 129,
Date and Time, 132, 134
DATE utility, 47
default disk, 14, 76
default DMA buffer, 56
default drive, 15
Default Error Mode, 117
default FCB, 57

default output delimiter, 141

Default Password, 136
delete file, 41, 45, 83
Delete XFCBS, 41
delimiters, 15
Delimiter output, 141
DEVICE utility, 28
differences: banked
and nonbanked, 1
DIR, 16
DIR.COM utility, 16
Direcatory Code, 53
direct BIOS calls , 20
Direct Console I/0, 65
Direct Memory Address, 94
dicvectory area, 11
directory check-sum vector,
Directory Code, 52, 53
directory entries , 39
directory functions, 32
directory hash tables, 2, 3
directory hashing, 49
Directory Label, 42, 43,
46, 80, 129, 131
directory label data byte,
129, 131
Directory Label password, 43
directory label
create, 129
update, 129
directory space, 12
DIRLBL.RSX, 22, 44, 129
DIRSYS, 16
disk access, 11
disk change, 49
disk directory area, 36
Disk Drive Organization, 11
disk formatting program, 20
Disk I/0 error, 51
Disk organization, 36
Disk Parameter Block, 100
disk record buffers, 2, 3
Disk Reset Function, 49
disk space, 12
Disk
current, 122
disk
select, 51
DMA
address, 122
buffer
default address, 57
DPB
address, 100
Disk Parameter Block, 100
drive A, 13

drive allocation vector, 49
drive capacity, 36
drive chain, 17, 18
drive code, 39
drive functions, 33
drive reset, 49
drive search chain, 122
drive select code, 34
drive specification, 15
drive support, 10
drives

Read-Only, 97
Dump file, 152
dynamic allocation, 12

B

edit control characters, 70
empty directory entry, 39
end~of-file, 29
ERASE, 16
error codes, 52, 79
Error Flag, 52, 53, 54
Error Handling, 50
error messages, 51
error mode, 122
Error mode
default, 50, 117
return, 50, 117
return and display, 50
return code, 122
Set, 117
error
? in Filename , 51
File Exists, 51
Invalid Drive, 51
Read-Only, 51
expanded error message, 50
extend operating system
functions, 7, 21
extended error codes, 54, 78
extended errors, 50, 51
extended FCB, 42
extent 0, 102, 104
extent field format, 133
extent number, 39

F

FCB, 77

FCB format, 41, 146

FCB length, 37, 41
default, 57
parsed, 18
random record field, 108

file
access, 32
attributes, 40
byte count, 49
byte count, 98
Control Block, 41
File Control Block FCB, 37
Control Block
default, 56
directory elements, 39
Dump, 152
Exists error, 51
format, 37
identification, 11
naming conventions, 35
organization, 36
Password error, 51
passwords, 45
size, 106
space allocation, 12
specification, 34
type field, 34, 35
filename, 11, 12, 15, 34, 39
Filename
parse, 144
filespec, 15
filetype, 11, 15, 39
Flush Buffers, 47, 53, 120
Free Blocks, 53
Free Drive
MP/M, 111
Free Space
Disk, 118
function calls, 5
functional
BDOS, 30
GENCOM, 8, 21, 31
GENCPM, 2, 14
generic filetypes, 36
Get ADDR (Alloc), 54, 95
Get Addr (Disk Parms), 54, 100
Get Console Mode, 139
Get Console Status, 73
Get Date and Time, 135
Get Disk Free Space, 53, 118
Get Output Delimiter, 141
Get Program Return Code, 138
Get Read-Only vector, 97
GET RSX, 31
Get User Code, 101
GET utility, 21, 23
GET.COM, 21, 23
GET.RSX, 21
Get/Set Console Mode, 30, 140

Get/Set
30,
Get/Set

Output Delimiter,
141
Program Return Code,

logical record size,

LST,
LST:,

29,
60,

32
64,

143

47

139
User Code, 101
characters, 60

20,
Get/Set
graphic

H

hard disks, 11

hash tables, 2, 49

HEX, 36

highest memory address, 55

I

INITDIR utility, 46, 129

initializing an FCB, 39

input buffer format, 68

INT, 36

Intel PL/M systems programming
language, 27

interface attributes, 40, 41, 77

internal date and time, 134

Invalid Drive error, 51

K

key fields, 108

L

line editing, 30
line feed, 37, 60
Link-80, 179
List Block,
list device, 29, 60
list output, 64, 122
Load Overlay, 8, 21
load RSX, 8, 21
LOADER, 5, 8, 10,
LOADER module, 21,
LOADER size, 10
LOADER base, 8, 10
Lock Record, 114
logged—-in state, 49
logging-in the drive, 49

143

18, 21

124, 168

logical
logical
logical
logical
logical
logical
logical
Logical

AUXIN,
AUXOUT,
CONIN,

28
28
28

coNouT, 28

device names, 28
drive, 10. 36

LST, 28

Memory Organization, 4

193

M

Make File, 41, 89
Make File function, 40
Make Write File XFCB, 42
maximum filesize, 11, 36
maximum memory, 1
maximum memory address, 9
maximum record count, 106
maximum TPA address, 19
media change, 49
memory map, 13
memory maximum, 1
memory organization, 1
Memory Region Boundaries, 8
memory regions, 8
miscellaneous functions, 33
modify file attribute

byte count, 98
modify operating system
functions, 7, 21
modules of operating system,

MP/M, 17, 24, 27, 74
multi-sector count, 48,
85, 122

multi-sector I/0, 48
multiple file reference, 12

N

next record, 108

nonbanked Memory
Organization, 1

nonbanked systems, 1

null byte, 119

null command file, 21

(o)

open file, 45

operating system modules, 4
output delimiter, 122. 141

overlay, 124 ‘

P

page, 9
alignment, 9
boundaries, 9
mode, 122
Relocatable, 17

4

Relocatable files, 22
Relocatable Program, 179
Zero, 5, 6, 13, 18, 20,

22, 24, 55

Zero fields, 18, 58
Parameter Block

BIOS, 123

RSX, 125

sCB, 121
Parse Filename, 34
Parse Filename Control Block

PFCB, 144
parse procedure, 17
parsed FCB, 18
Partial close, 41, 79
password, 1, 12, 15, 18, 44
password address, 55, 56
password field, 34, 58
password length, 55, 56
password mode, 132
Password Protection Modes, 44
password support, 1
password

assign, 42

default, 45, 136
permanent close, 79
physical drive, 10
physical error, 50, 53
physical error codes,

54, 76, 78, 81
physical file size, 106
physical record size, 47
PIP command, 11
PIP utility, 40
PL/M, 27
PLI, 36
Print Block, 142
Print String, 31, 68
printer echo, 29, 31, 60
PRL, 36, 124
PRL file, 17, 22
PRL File Format, 179
PRL filetype, 17
PRN, 36
PROFILE submit file, 14
PROFILE.SUB, 14
Program chain, 20, 119
Program Return Code, 20
PUNCH, 32
Purge flag, 120

Q

question mark, 12, 35

194

R

Random Access, 156
random file, 37
random record field
FCB, 108
random record number, 37, 39
random record position, 56
Read Buffer Input, 30
read character, 60
Read Console Buffer, 69
read edited console input, 68
read next record, 85
Read random, 52, 102
Read Sequential, 52, 85
Read-Only, 96
Read-Only attribute, 40
Read-Only Disk error, 51
Read-Only drives, 97
Read-Only File error, 51
READER, 32
record, 37
record blocking, 47, 116
record count, 39
record deblocking, 47
record size, 32
Record
Lock, MP/M, 114
Unlock, MP/M, 115
redirected input, 24
region boundaries, 8
register A, 52
REL, 36
relocatable module, 124
remove file, 45
Remove flag
RSX, 23
remove RSX, 22
RENAME, 16
Rename File, 91
reset disk system, 19, 79
reset drive, 49, 109
resident operating system
module, 2
resident portion, 2
Resident System Extension,
5, 7, 8, 12, 21, 167
Return and Display Error
Mode, 117
Return Code
Program, 138
return codes, 52
Return Current Disk, 93
Return Directory Label, 44

Return Directory Label Data,
53, 131
Return Error Mode, 117
Return Login Vector, 92
return modes, 117
Return Serial Number, 137
Return Version Number, 74
RSX, 5, 7, 8, 10, 19,
20, 21, 24
active, 8
File Format, 22
flags, 22
header, 8, 19, 22, 124
Parameter Block, 125
prefix, 168
programs, 167
removal, 22
rub/del
remove last character, 70

S

SCB, 24
SCB parameter block, 121
scroll output, 29
support, 31
Search For First, 80
Search For Next, 80, 82
sectors, 118
select disk, 51, 53, 76
sequential file, 37
sequential I/O processing, 48
serial device 1/0, 28
Serial Number, 137
SET BDOS Error Mode, 117
Set Console Mode, 139
Set Date and Time, 134
Set Default Password, 45, 136
Set Directory Label, 22, 43,
45, 129
SET DMA Address, 94
Set Error Mode, 50
Set File Attributes, 40, 41,
45, 49, 98
set file byte count, 41
Set multi-sector count,
48, 1lle
Set Output Delimiter, 141
Set Program Return Code, 138
Set Random Record, 108
Set User Code, 101
SETDEF utility, 17, 18, 23
SFCB, 45, 129
sign-on message, 13

195

size
BDOS, 10 .
common region, 4
compute File BDOS, 106
LOADER, 10
record, .32
transient program, 10
Source files, 37
space
Disk, 118
Sparse files, 37
SPR, 36
Standard Delete, 83
standard search, 80
start scroll, 60
stop scroll, 60
SsuUB filetype, 17
SUBMIT, 17
submit command line, 23
submit file, 14, 16, 17, 23
SUBMIT RSX, 24
SUBMIT utility, 12, 23
SYM, 36
SYS, 36
System
Attribute, 40
cold start, 10, 11, 12
communication, 6
components, 4
Control Block, 121
date and time, 46
generation, 13
Interaction, 6
modules, 4
Operation, 12
prompt, 12, 14, 24
regions, 4
reset, 20, 59
tracks, 11, 13
warm start, 10, 11, 14

T

tab characters, 60
tab expansion, 29, 31
temporarily-allocated
data block, 126
temporary drive, 122
temporary file drive, 23
temporary submit file, 23
terminate execution, 20
terminate program execution,
7, 20
Test and Write Record, 113
TEX, 36

time, 24

Time and Date, 134

TPA, 5, 8, 10, 14, 18, 19

transient program, 5, 10, 12,
16, 19

Truncate File, 45

TYPE, 16

types of file stamps, 46

U

Unlock Record
MP/M, 115

update date and time stamp,
89, 104

update directory label, 129

update stamp types, 46

USER, 16

User 0, 41, 42

User 0 file access, 42

user command, 11

user directories, 41

user number, 14, 18, 24,
41, 42, 101

User number conventions, 41

user numbers, 11

version number, 122

virtual file size, 106

W

warm start, 10, 14, 19,
20, 22, 59
wildcard characters, 12
write data record, 87
Write File XFCB, 45
Write Protect Disk, 96
Write Random function, 52, 104
Write Random with Zero Fill,
52, 112
Write Sequential, 52, 87
write-pending records, 120

X
‘XFCB, 41, 42, 45, 83
Z

Zero Fill
Write Random, 112

$$$, 36

$$$ filetype, 23
? in Filename error, 51

196

Reader Comment Form

We welcome your comments and suggestions. They help us provide you with better
product documentation.

Date ____ Manual Title Edition

1. What sections of this manual are especially helpful?

2. What suggestions do you have for improving this manual? What information
is missing or incomplete? Where are examples needed?

3. Did you find errors in this manual? (Specify section and page number.)

COMMENTS AND SUGGESTIONS BECOME THE PROPERTY OF DIGITAL RESEARCH.

i

— s . —— — —_—— . . T—— i . oo . S S e s

. |
NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES
|
|
1
]
]
I
b}
|
]
]
.}
]
BUSINESS REPLY MAIL —
FIRST CLASS / PERMITNO.182 / PACIFIC GROVE, CA =]
|]
POSTAGE WILL BE PAID BY ADDRESSEE T
]
~ S
DIGITAL RESEARCH ———
']
P.O. Box 579 IEEE—
Pacific Grove, California
93950

Attn: Dithlicatinn Pradnectinn

