

Copyright © 1976, 1978 by Digital Research. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or trans
lated into any language or computer language, in any fonn or
by any means, electronic, mechanical, magnetic, optical,
chemical, manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579, Pacific
Grove, Cal!fornia 93950.

Disclaimer

Digital Research makes no representations or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Digital Research reserves the
right to revise this publication and to make changes from
time to time in the content hereof without obligation of
Digital Research to notify any person of such revision or
changes.

TABLE OF CONTENTS

1. INTRODUCTION · · · · · · · 1

1.1 CP/M Organization · · · · 1

1.2 Operation of Transient Programs · · · · · 1

1.3 Operating System Facilities · · · · · · · · · 3

2. BASIC I/O FACILITIES · · 4

2.1 Direct and Buffered I/O · · · · · · · · · 5

2.2 A Simple Example · · · · · · 5

3. DISK I/O FACILITIES · · · · · · · · · · · 9

3.1 File System Organization · · · · · · 9

3.2 File Control Block Format · · · · • · 10

3.3 Disk Access Primitives · · · 12

3.4 Random Access . · · · · · · · · · · · · · 18

4. SYSTEM GENERATION · · · · · · · · · · · · · · · · 18

4.1 Initializing CP/M from an Existing Diskette · · · 19

5. CP/M ENTRY POINT SUMMARY · 20

6. ADDRESS ASSIGNMENTS • • • • • • • • • • • • • • • • • 22

7. SAMPLE PROGRAMS • • • • 23

ii

CP/M INTERFACE GUIDE

1. INTRODUCTION

rl'his manual describes the CP/M system organization including
the structure of memory, as well as system entry points. The
intention here is to provide the necessary information required
to write programs which operate under CP/M, and which use the
peripheral and disk I/O facilities of the system.

1.1 CP/M Organization

CP/M is logically divided into four parts:

BIOS - the basic I/O system for serial peripheral control

BOOS - the basic disk operating system primitives

CCP - the console command processer

TPA - the transient program area

The BIOS and BOOS are combined into a single program with a com
mon entry point and referred to as the FooS. The CCP is a dis
tinct program which uses the FDOS to provide a human-oriented
interface to the information which is cataloged on the diskette.
The TPA. is an area of memory (i. e, the portion which is not used
by the FDOS and CCP) where various non-resident operating system
commands are executed. User programs also execute in the TPA.
The organization of memory in a standard CP/M system is shown in
Figure 1.

The lower portion of memory is reserved for system information
(which is detailed in later sections), including user defined inter
rupt locations. The portion between tbase and cbase is reserved
for the transient operating system commands, while the portion
above cbase contains the resident CCP and FooS. The last three
locations of memory contain a jump instruction to the FDOS entry
point which provides access to system functions.

1.2 Operation of Transient Programs

Transient programs (system functions and user-defined programs)
are loaded into the TPA and executed as follows. The operator
communicates with the CCP by typing command lines following each
prompt character. Each command ·line takes one of the forms:

{

<command> }
<command> <filename>

<Command> <filename>.<filetype>

3

Where <command> is either a built-in command (e.g., DIR or TYPE),
or the name of a transient command or program. If the <command>
is a built-in function of CP/M, it is executed immediately; other
wise the CCP searches the currently addressed disk for a file
by the name

<command>.COM

If the file is found, it is assumed to be a memory image of a
program which executes in the TPA, and thus implicitly originates
at tbase in memory (see the CP/M LOAD command). The CCP loads
the COM file from the diskette into memory starting at tbase,
and extending up to address cbase.

If the <command> is followed by either a <filename> or
<filename>. <filetype> , then the CCP prepares a file control
block (FCB) in the system information area of memory. This FCB
is in the form required to access the file through the FDOS, and
is given in detail in Section 3.2.

The program then executes, perhaps using the I/O facilities
of the FDOS. If the program uses no FOOS facilities, then the
entire remaining memory area is available for data used by the
program. If the FDOS is to remain in memory, then the transient
program can use only up to location fbase as data.* In any case,
if the CCP area is used by the transient, the entire CP/M system
must be reloaded upon the transient's completion. This system
reload is accomplished by a direct branch to location "boot" in
memory.

The transient uses the CP/M I/O facilities to communicate
with the operator's console and peripheral devices, including
the floppy disk subsystem. The I/O system is accessed by passing
a "function number" and an "information address" to CP/M through
the address marked "entry" in Figure 1. In the case of a disk
read, for example, the transient program sends the number corres
ponding to a disk read, along with the address of an FCB, and
CP/M performs the operation, returning with either a disk read
Icomplete indication or an error number indicating that the disk
operation was unsuccessful. The function numbers and error in
dicators are given in detail in Section 3.3.

1.3 Operating System Facilities

CP/M facilities which are available to transients are divided
into two categories: BIOS operations, and BDOS primitives. The
BIOS operations are listed first:**

l

* Address "entry" contains a jump to the lowest address in the
FOOS, and thus "entry+l" contains the first FDOS address which
cannot be overlayed.

**The device support (exclusive of the disk subsystem) corres
ponds exactly to Intel's peripheral definition, including I/O
port assignment and status byte format (see the Intel manual
which discusses the It1tellec MDS hardware environment).

PRINTCHAR: PROCEDURE (B);
/* SEND THE ASCII CHARACTER B TO THE CONSOLE.*/
DECLARE B BYTE;
CALL MONl(2,B);
END PRINTCHAR;

CRLF: PROCEDURE;
/* SEND CARRIAGE-RETURN-LINE-FEED CHARACTERS */
CALL PRINTCHAR (ODH); CALL PRINTCHAR (OAH);
END CRLF;

PRINT: PROCEDURE (A);
/* PRINT THE BUFFER STARTING AT ADDRESS A */
DECLARE A ADDRESS;
CALL MON1 (9,A) ;
END PRINT;

DECLARE ROBUFF (130) BYTE;

READ: P ROC EDURE i

/* READ CONSOLE CHARACTERS INTO 'ROBUFF' * /
RDBUFF=128; /* FIRST BYTE SET TO BUFFER LENGTH */
CALL MONI (10, . RDBUFF) ;
END READ;

DECLARE I BYTE;
CALL CRLFi CALL PRINT (.'TYPE INPUT LINES $');

DO WHILE Ii /* INFINITE LOOP-UNTIL CONTROL-C */
CALL CRLF; CALL PRINTCHAR ('*'); /* PROMPT WITH '*' */
CALL READ; I = RDBUFF(l);

ENDi

DO WHI LE (I: = I -1) <"> 255;
CALL PRINTCHAR (RDBUFF(I+2»;
END;

The execution of this program might proceed as follows:

TYPE INPUT LINES
*HELLOJ OLLEH
*WALL WALLA WASH;
HSAW ALLAW ALLAW
*MOM WOW;
WOW MOM
*tc (system reboot)

6

